Документ подписан простой электронной подписью Информация о владельце:

ФИО: Наумова Наталия МИРЕТРИСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования дата подписания: 29.04.2075 ГУТУ ДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ»

6b5279da4e034bff679172803da5b7b559fc69e2

Факультет естественных наук Кафедра теоретической и прикладной химии

Согласов	вано	

и.о. декана факультета естественных наук

Рабочая программа дисциплины

Молекулярная биология

Направление подготовки

44.03.05 Педагогическое образование (с двумя профилями подготовки)

Профиль:

Биология и химия

Квалификация

Бакалавр

Формы обучения

Очная, очно-заочная

факультета естественных наук

Протокол «<u>УЗ</u>» СЗ 2024 г. № <u>Я</u>
Председатель УМКом //Ляжина И.Ю./

Согласовано учебно-методической комиссией Рекомендовано кафедрой теоретической и прикладной химии

Протокол от « 19 » С2 2024 г. № 7 Зав. кафедрой Васильев Н.В./

Мытищи 2024

Автор-составитель:

Дроганова Татьяна Сергеевна, старший преподаватель кафедры теоретической и прикладной химии

Рабочая программа дисциплины «Молекулярная биология» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки), утвержденного приказом МИНОБРНАУКИ РОССИИ от 22.02.2018., № 125

Дисциплина входит в «Предметно-методический модуль», обязательной части Блока 1 « Дисциплины (модули)» и является обязательной для изучения

Год начала подготовки (по учебному плану) 2024

Содержание

1.	ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ	4
2.	МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	4
3.	ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	4
	УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ УЧАЮЩИХСЯ	8
5. ПРО	ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ЭМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ	9
6.	УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	20
7.	МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ	22
	ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ РАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	23
9.	МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	23

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цель и задачи дисциплины

Цель освоения дисциплины – сообщить обучающимся знания о содержании, современных теоретических и практических задачах молекулярной биологии как науки, изучающей взаимосвязь строения и функций биологических макромолекул, обеспечивающих жизнедеятельность организмов.

Задачи дисциплины:

- прочное освоение учащимися теоретических знаний в области основных разделов молекулярной биологии;
- обеспечение навыков работы с молекулярно-биологическими объектами, объяснения и демонстрации полученных данных;
- приобретение обучающимися умений самостоятельного поиска информации в области молекулярной биологии, ее анализа и использования в процессе учебной и практической (преподавательской) деятельности.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

ОПК-8. Способен осуществлять педагогическую деятельность на основе специальных науч-ных знаний.

ПК-1. Способен осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в «Предметно-методический модуль», обязательной части Блока 1 « Дисциплины (модули)» и является обязательной для изучения

Для освоения дисциплины обучающиеся используют знания, умения и виды деятельности, сформированные в процессе изучения дисциплин «Органическая химия», «Генетика», «Цитология», «Биологическая химия» на предыдущих этапах образования.

В результате освоения данных дисциплин обучающиеся, в частности, приобретают знания в области строения основных классов органических соединений биологической природы, химического состава и обмена веществ и энергии в организме, принципах ферментативного катализа, взаимосвязи и регуляции обмена веществ. Одновременно у обучающихся вырабатываются умения в области проведения практических (лабораторных) работ с биологическими объектами, формируется готовность к восприятию нового теоретического материала и практических навыков в области молекулярной биологии.

В связи с тем, что в процессе освоения текущего курса обучающиеся приобретают необходимые знания в области молекулярных механизмов хранения, воспроизведения и реализации генетической информации, мутагенных и канцерогенных факторов окружающей среды, основополагающих методов и возможностей генетической инженерии и молекулярной биотехнологии, освоение дисциплины «Молекулярная биология» является необходимым для последующего изучения таких дисциплин как «Теория эволюции», «Физиология растений», «Физиология человека и животных», «Биохимические методы мониторинга окружающей среды», «Популяционная генетика» и др., а также прохождения производственной практики.

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Поморожени объемо иментични	Формы	обучения
Показатель объема дисциплины	Очная	Очно-заочная
Объем дисциплины в зачетных единицах	3	3
Объем дисциплины в часах	108	108
Контактная работа	50,3	38,3
Лекции	16	12
Лабораторные занятия	32	24
из них, в форме практической подготовки	4	-
Контактные часы на промежуточную атте-	2,3	2,3
стацию:		
Экзамен	0,3	0,3
Предэкзаменационная консультация	2	2
Самостоятельная работа	48	60
Контроль	9,7	9,7

Форма промежуточной аттестации - экзамен в 8 семестре по очной форме и В семестре по очно-заочной форме обучения

3.2. Содержание дисциплины

	Кол-во часов					
	O	чная форм	1a	Очно-з	аочная	
Наименование разделов (тем)		T		форма		
Дисциплины с кратким содержани- ем	Лекции	кции Лабораторные за- нятия		Лекции	Лабора- торные занятия	
		Общее количе- ство	из них, в форме прак- тиче- ской подго- товки			
Раздел I. Задачи и методы молекулярной биологии. Современные теоретические и практические задачи молекулярной биологии как составляющей физико-химической биологии (расшифровка структуры геномов, создание банков генов, изучение молекулярных основ эволюции, адаптации, канцерогенеза и др.). Методы молекулярной биологии. Физико-химические методы (хроматография, электрофорез, ультрацентрифугирование и др.) изучения структуры и свойств главных биополимеров (нуклеиновых кислот и белков).		4			2	
Раздел II. Структура геномов.						

	,			
Тема 1. Структура геномов вирусов и фагов. Строение геномов ДНК-	1	4	1	2
содержащих фагов φΧ174, М13, λ-фага, вируса гепатита В. Болезни, вы-				
зываемые ДНК-содержащими вируса-				
ми.				
РНК-содержащие вирусы. Ретровиру-				
сы. Вирус иммунодефицита человека				
(ВИЧ), его структура и цикл развития,				
подходы для борьбы с ним. Вирусы				
гриппа. Онкогенные вирусы.				
Тема 2. Структура геномов бакте-	1	4	1	2
рий. Особенности структуры геномов	1	-	1	2
бактерий. Различия в геномах у раз-				
личных видов бактерий. Минималь-				
ный размер генома прокариот. Осо-				
бенности строения генов бактерий.				
Структура оперонов бактерий и регу-				
ляция транскрипции. Плазмидная ДНК				
бактерий. Химический синтез ДНК				
бактерий как путь создания синтетиче-				
ских геномов.				
Тема 3. Структура геномов эукари-	1	4	1	2
от. Мозаичное строение генов эукари-	1	4	1	2
от. Повторяющиеся и уникальные по-				
следовательности в ДНК. Теломерные				
повторы. Саттелитная ДНК. Итоги вы-				
полнения программы «Геном челове-				
ка». Успехи и перспективы в изучении				
структуры генома человека, животных				
и растений.				
Раздел III. Подвижные гены, реком-				
бинация и эволюция геномов.				
Тема 1. Молекулярные основы гене-	1	2	1	2
тической рекомбинации. Общая и	1	2	1	_
сайт-специфическая рекомбинация.				
Белки и ферменты, участвующие в ре-				
комбинации. Бактериофаги как участ-				
ники сайт-специфической рекомбина-				
ции. Особенности рекомбинации ви-				
русных РНК.				
Тема 2. Подвижные генетические	2	2	1	2
элементы и эволюция. Подвижные	_	_	•	_
генетическте элементы бактерий, их				
структура и возможные механизмы				
перемещения транспозонов.				
Мобильные диспергированные гены				
эукариот. Ретропозоны. Псевдогены.				
Последствия ретропозиции и эволю-				
ция геномов.				
Раздел IV. Повреждения и репара-				
ция ДНК. Апоптоз.				
411 411111 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

Т		2		1	2
Тема 1. Причины и виды поврежде-	2	2		1	2
ний ДНК. Классификация факторов,					
вызывающих повреждения в ДНК. Ан-					
тропогенные факторы мутагенеза. Ак-					
тивные формы кислорода как индук-					
торы мутационного процесса. Мутаге-					
ны и раковое перерождение клеток.					
Тема 2. Виды репарации ДНК. Репа-	2	2		2	2
рация ДНК и ее виды: прямая и эксци-					
зионная репарация. SOS - репарация.					
Ферменты репарации.					
Тема 3. Молекулярные механизмы	2	2		1	2
апоптоза. Молекулярные и биохими-					
ческие аспекты апоптоза. Индукторы и					
рецепторы апоптоза. Каспазы, их стро-					
ение и мишени воздействия. Взаимо-					
связь процессов апоптоза и вирусного					
канцерогенеза.					
Апоптоз и регуляция клеточного цик-					
ла.					
Раздел V. Современные методы и					
задачи генетической инженерии, ге-					
номики и протеомики					
Тема 1. Методы геномики и генети-	2	4	4	1	4
ческой инженерии. Понятие о реком-					
бинантных ДНК. Генетическая инже-					
нерия как технология получения					
функционально активных генетиче-					
ских структур. Рестрикция ДНК. Ре-					
стриктазы, их классификация и осо-					
бенности воздействия на ДНК. Клони-					
рование ДНК. Плазмиды, их свойства					
и функции. Векторы молекулярного					
клонирования. Гибридизация нуклеи-					
новых кислот. Химический синтез ге-					
нов и геномов. Полимеразная цепная					
реакция (ПЦР) и аспекты ее примене-					
ния.					
Различные стратегии молекулярного					
клонирования. Получение генов с ис-					
пользованием обратной транскрипта-					
зы. Геномика, ее задачи и достижения.					
Методы секвенирования ДНК. Задачи					
II					
биоинформатики. Методы и задачи					
протеомики.	1	4		1	2
Тема 2. Достижения и перспективы	1	4		1	2
генетической инженерии, геномики					
и протеомики. Получение пептидных					
гормонов: гормона роста, соматоста-					
тина, инсулина. Получение интерфе-					
ронов.					
Получение трансгенных растений					

(общие принципы, достижения и пер-					
спективы). Преимущества трансген-					
ных видов и сортов растений.					
Получение трансгенных животных в					
научных и практических целях. Транс-					
генные рыбы, птицы, овцы и крупный					
рогатый скот и перспективы их ис-					
пользования.					
Молекулярно-генетическая трансфор-					
мация видов бактерий. Проблемы со-					
здания искусственных клеток и орга-					
низмов.					
Итого	16	32	4	12	24

Практическая подготовка

Тема	Задание на практическую	Количество
	подготовку	часов
		Очное
Тема 1. Методы геномики и генети-	Получение белковых экстрактов	4
ческой инженерии	из тканей животных и растений	
1		

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ CAMOCTOЯТЕЛЬ-НОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

По очной и очно-заочной форме обучения

Темы для самостоя- тельного изучения	Изучаемые вопросы	Количество часов				Формы самосто- ятельной работы	Методические обеспечения	Формы от- четности
·		Оч. ф.	Оч заоч. ф.	•				
Раздел I. Задачи и методы молекуляр- ной биологии	Современные задачи молекулярной био-логии. Методы молекулярной биологии	6	10	Работа с учебной литературой и ресурсами сети «Интернет»	Основная и до- полнительная литература, ин- тернет-ресурсы	Опрос, тестирование, выполнение и защита лабораторных работ, реферат, контрольное задание		
Раздел II. Структу- ра геномов	Структура геномов вирусов, бактерий и эукариот	10	12	Работа с учебной литературой и ресурсами сети «Интернет»	Основная и до- полнительная литература, ин- тернет-ресурсы	Опрос, тестирование, выполнение и защита лабораторных работ, реферат, контрольное задание		
Раздел Ш.Подвижные ге- ны, рекомбинация и эволюция гено- мов	Молекулярные основы генетической рекомбинации. Подвижные генетические элементы и эволюция	8	12	Работа с учебной литературой и ресурсами сети «Интернет»	Основная и до- полнительная литература, ин- тернет-ресурсы	Опрос, тестирование, выполнение и защита лабораторных работ, реферат, кон-		

						трольное за- дание
Раздел IV. Повреждения и репарация ДНК. Апоптоз.	Причины и виды повреждений ДНК. Виды репарации ДНК. Молекулярные механизмы апоптоза	10	12	Работа с учебной литературой и ресурсами сети «Интернет»	Основная и до- полнительная литература, ин- тернет-ресурсы	Опрос, тести- рование, вы- полнение и защита лабо- раторных работ, рефе- рат, кон- трольное за- дание
Раздел V. Методы и задачи генетиче- ской инженерии, геномики и про- теомики	Методы геномики и генетической инженерии. Достижения и перспективы генетической инженерии, геномики и протеомики	14	14	Работа с учебной литературой и ресурсами сети «Интернет»	Основная и до- полнительная литература, ин- тернет-ресурсы	Опрос, тестирование, выполнение и защита лабораторных работ, реферат, контрольное задание
Итого		48	60			

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код и наименование компетенции	Этапы формирования
ПК-1. Способен осваивать и использовать теоре-	1.Работа на учебных занятиях
тические знания и практические умения и навыки	2.Самостоятельная работа
в предметной области при решении профессио-	
нальных задач	
ОПК-8. Способен осуществлять педагогическую	1.Работа на учебных занятиях
деятельность на основе специальных научных	2.Самостоятельная работа
знаний	

5.2.Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оценивае-	Уровень	Этап	Описание	Критерии	Шкала оценива-
мые ком-	сформиро-	формирова-	показателей	оценивания	кин
петенции	ванности	кин			
ПК-1	Пороговый	1.Работа на учебных занятиях 2.Самостоя тельная работа	Знать: - основы молекулярной биологии; - фундаментальные принципы функционирования живых систем. Уметь: - применять научные знания в области молекулярной биологии для общеобразовательных дисциплин и решения профессиональных задач; - осуществлять поиск и анализ научной информации по акту-	Опрос, тестирование, выполнение и защита лабораторных работ	Шкала оценивания опроса шкала оценивания тестирования, шкала оценивания выполнения и защиты лабораторных работ

			альным вопросам современного естествознания; - прогнозировать направление и результат химических превращений биологически значимых макромолекул.		
	Продвинутый	1.Работа на учебных занятиях 2.Самостоят ельная работа	Знать: - основы молекулярной биологии; - фундаментальные принципы функционирования живых систем. Уметь: - применять научные знания в области молекулярной биологии для общеобразовательных дисциплин и решения профессиональных задач; - осуществлять поиск и анализ научной информации по актуальным вопросам современного естествознания; - прогнозировать направление и результат химических превращений биологически значимых макромолекул. Владеть: - практическими навыками исследований для проведения экспериментальных научноисследовательских работ с биологическими объектами в рамках профессиональной деятельности.	Опрос, тестирование, выполнение и защита лабораторных работ в форме практической подготовки, реферат, контрольное задание	-Шкала оценивания опроса, шкала оценивания тестирования, шкала оценивания выполнения и защиты лабораторных работ в форме практической подготовки, шкала оценивания реферата, шкала оценивания контрольного задания
ОПК-8	Пороговый	1.Работа на учебных занятиях 2.Самостоя тельная работа	Знать: - основные современные методы генной инженерии; - основы биотехнологических и биомедицинских производств и молекулярного моделирования Уметь: - использовать основные современные методы генной инженерии, основы биотехнологических и биомедицинских производств и молекулярного моделирования в профессиональной деятельности	Опрос, тестирование, выполнение и защита лабораторных работ	Шкала оценивания опроса, шкала оценивания тестирования, шкала оценивания выполнения и защиты лабораторных работ
	Продвину- тый	1.Работа на учебных занятиях 2.Самостоят ельная ра- бота	Знать: - основные современные методы генной инженерии; - основы биотехнологических и биомедицинских производств и молекулярного моделирования	Опрос, тестирование, выполнение и защита лабораторных работ в форме практической подго-	Шкала оценивания опроса, шкала оценивания тестирования, шкала оценивания выполнения

	Уметь: - использовать основные современные методы генной инженерии, основы биотехнологических и биомедицинских производств и молекулярного моделирования в профессиональной деятельности Владеть: - современными методами генной инженерии, основами биотехнологических и биомедицинских производств и молекулярного моделирования	товки, реферат, контрольное задание	и защиты лабораторных работ в форме практической подготовки, шкала оценивания реферата, шкала оценивания контрольного задания
--	--	-------------------------------------	---

Шкала оценивания опроса

Максимальное количество баллов – 24 (3 балла за каждый опрос)

Показатель	Баллы
Свободное владение материалом	
Достаточное усвоение материала	2
Поверхностное усвоение материала	
Неудовлетворительное усвоение материала	

Шкала оценивания тестирования

Макс. количество баллов за семестр - 6

Процент правильных ответов	Баллы
80-100%	6,8-9
60-80%	3,6-6,7
40-60%	2,4-3,2
20-40%	1,2-2,3
0-20%	0-1,1

Шкала оценивания выполнения и защиты лабораторной работы

Макс. количество баллов – 24 (по 3 балла за работу)

Критерии оценивания	Кол-во баллов
Работа выполнена полностью по плану без существенных ошибок и сделаны правильные выводы	3
Работа выполнена не полностью или с небольшими ошибками, сделаны частично верные выводы	1-2
Работа не выполнена	0

Шкала оценивания выполнения контрольные задания

Максимальное количество баллов за семестр – 6

Уровень оценивания	Критерии оценивания	Баллы
	Свободное владение материалом	6
Выполнение контроль-	Достаточное усвоение материала	4-5
ного задания	Поверхностное усвоение материала	2-3
	Неудовлетворительное усвоение материала	0-1

Шкала оценивания практической подготовки

Максимальное количество баллов за семестр – 3

Критерии оценивания	Баллы
высокая активность на практической подготовке, отработан навык	3
или алгоритм работы с биологическими объектами	
средняя активность на практической подготовке, отработан навык	1-2
или алгоритм работы с биологическими объектами	
низкая активность на практической подготовке, навык или алго-	0
ритм работы с биологическими объектами не отработан	

Шкала оценивания реферата

Максимальное количество баллов за семестр – 2

		 F	
По	казатель		Баллы

Реферат соответствует заявленной теме, выполнен с привлечени-	2
ем достаточного количества научных и практических источников	
по теме, студент в состоянии ответить на вопросы по теме.	
Реферат в целом соответствует заявленной теме, выполнен с при-	1
влечением нескольких научных и практических источников по	
теме, студент в состоянии ответить на часть вопросов по теме	
Реферат не соответствует заявленной теме, выполнен с использо-	0
ванием только 1 или 2 источников, студент допускает ошибки при	
изложении материала, не в состоянии ответить на вопросы по те-	
ме.	

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерные вопросы для подготовки к контрольным заданиям:

- 1.Перечислите основные теоретические и практические задачи современной молекулярной биологии.
- 2. Какова роль отечественных ученых в изучении структуры нуклеиновых кислот и молекулярной организации вирусов и фагов?
- 3. Почему работы Дж. Уотсона и Φ . Крика расцениваются как революционные в современной биологии?
- 6.Перечислите основные физические методы, используемые в молекулярной биологии. Какие параметры структуры биополимеров и органелл клетки изучаются данными методами?
- 7. Как используется в молекулярной биологии культура клеток, гибридные клетки и бесклеточные системы?
- 9.Перечислите основные методы технологии получения рекомбинантных ДНК. Кем были разработаны принципы молекулярного клонирования?
- 10. Назовите основные ферменты, используемые в генетической инженерии, и укажите реакции, которые они катализируют.
- 11. Какие типы рестриктаз вам известны и как они используются в генетической инженерии?
- 12. Что представляют собой плазмиды? Какие свойства плазмид используются в генетической инженерии?
- 13.На чем основан метод гибридизации нуклеиновых кислот? Что представляет собой ДНК-зонлы?
- 14.Изобразите в виде схемы процесс получения генов с использованием обратной транскриптазы.
- 15. Что представляет собой полимеразная цепная реакция и каковы возможности ее практического использования?
- 16.Какие методы определения первичной структуры ДНК вам известны? В чем состоит принцип этих методов? Как получают библиотеки генов и библиотеки кДНК?
- 17. Каковы в настоящее время успехи в области изучения геномов прокариот и эукариот?
- 18. Изобразите схему получения гормона роста методами генетической инженерии.
- 19.В чем состоят основные отличия структуры геномов про- и эукариот?
- 20. Каковы особенности генетического кода митохондрий?
- 21. Какие ДНК-содержащие вирусы и фаги вам известны?
- 22. Какие виды подвижных генетических элементов вы знаете и каковы характерные особенности их строения?
- 23. Назовите известные вам виды регуляторных последовательностей эукариотических геномов.
- 24. Какие виды генетической рекомбинации вы знаете?

- 25. Каковы современные представления о структуре хроматина?
- 26.Перечислите известные виды повреждений структуры ДНК. Какие факторы способны вызывать мутации в ДНК?
- 27. Приведите схему строения оперонов бактерий и объясните функции их основных элементов
- 29. Что представляют собой аутосплайсинг и альтернативный сплайсинг?
- 30.Представьте в виде схемы цикл развития ВИЧ. К какой группе вирусов он относится? Каковы перспективы борьбы со СПИДом?
- 31. Каковы особенности структуры онкогенных вирусов? Приведите примеры онкогенов и онкобелков. Что вам известно о механизмах ракового перерождения клеток?
- 32. Что представляет собой апоптоз и каково его биологическое значение?
- 33.В связи с чем укорачиваются хромосомы эукариот при каждой последующей репликации?
- 34. Какие механизмы обеспечивают точность трансляции?
- 35. Как осуществляется транспорт белка через мембрану?
- 36. Какие ферменты принимают участие в нейтрализации активных форм кислорода?

Примерные вопросы к экзамену:

- 1. Молекулярная биология как составляющая физико-химической биологии. Предмет и задачи молекулярной биологии.
- 2. Основные достижения молекулярной биологии.
- 3. РНК как вероятный первичный в эволюции форм жизни биополимер (концепция «мир РНК»).
- 4. Виды мутаций ДНК и причины их возникновения.
- 5. Активные формы кислорода, их возникновение и воздействие на структуру ДНК.
- 6. Механизмы репарации ДНК. Прямая и эксцизионная репарация.
- 7. Молекулярные механизмы апоптоза. Взаимосвязь апоптоза с канцерогенезом.
- 8. Апоптоз и теория канцерогенеза.
- 9. Онкогены, онкобелки и возможные механизмы их действия.
- 10. Современные теории вирусного канцерогенеза.
- 11. Препараты, используемые в химиотерапии.
- 12. ДНК-содержащие вирусы и фаги. Особенности структуры геномов фагов ϕX 174 и λ . Вирусы гепатита.
- 13. Структура и цикл развития вируса иммунодефицита человека.
- 14. Особенности генома бактериофагов, позволяющие использовать их в качестве векторов молекулярного клонирования.
- 15. Открытие явления обратной транскрипции и его значение для прогресса молекулярной биологии.
- 16. Молекулярные механизмы генетической рекомбинации.
- 17. Сайт-специфическая рекомбинация.
- 18. Особенности структуры геномов и генов бактерий.
- 19. Особенности строения плазмид, их применение в качестве векторов молекулярного клонирования.
- 20. Подвижные генетические элементы прокариот.
- 21. Структура геномов эукариот. Уникальные и повторяющиеся гены.
- 22. Структура хроматина и ее связь с функциональной активностью генома.
- 23. Регуляторные элементы генома эукариот.
- 24. Сателлитная ДНК.
- 25. Некодирующая ДНК. Роль в молекулярной эволюции.
- 26. Особенности структуры ДНК клеточных органелл.
- 27. Генетический код: особенности ядерного и митохондриального геномов.
- 28. Мобильные диспергированные гены эукариот.
- 29. Наследственные заболевания и их диагностика.

- 30. Особенности структуры генома человека.
- 31. Особенности протеома человека.
- 32. Задачи геномики и протеомики.
- 33. Ферменты, используемые в генетической инженерии.
- 34. Химический синтез генов и геномов. Работы Х.-Г. Корана и К Вентера.
- 35. Схема получения рекомбинантных ДНК и их клонирования в клетках бактерий.
- 36. Векторы молекулярного клонирования, их разнообразие и использование в генетической инженерии.
- 37. Принцип комплементарности и его использование в гибридизации нуклеиновых кислот.
- 38. ДНК-зонды и их применение.
- 39. Получение пептидных гормонов (соматостатин, гормон роста) и интерферонов методами генетической инженерии.
- 40. Получение лекарственных препаратов при помощи биотехнологии.
- 41. Получение трансгенных растений: общие принципы, достижения и перспективы.
- 42. Полимеразная цепная реакция, принцип метода.
- 43. Синтез генов с использованием обратной транскриптазы.
- 44. Рестриктазы и их использование в генетической инженерии.
- 45. Бесклеточные системы трансляции и перспективы их использования для внеклеточного синтеза белков. Репликазы и их применение в системах искусственного синтеза белка.
- 46. Методы определения первичной структуры ДНК.
- 47. Изучение молекулярной организации мембран (работы Ю. Овчинникова).
- 48. Каталитически активные антитела (абзимы). Перспективы их применения.
- 49. Использование методов молекулярной биологии в диагностике заболеваний.
- 50. Перспективы развития молекулярной биологии.

Примерные темы рефератов

- 1. Геном вирусов. Молекулярные аспекты вирусных заболевания человека: гепатиты B, C, грипп, СПИД
- 2. Особенности генома бактериофагов, позволяющие использовать их в качестве векторов молекулярного клонирования.
- 3. Особенности строения плазмид, их применение в качестве векторов молекулярного клонирования.
- 4. Подвижные генетические элементы эукариот и молекулярная эволюция.
- 5. Повторяющиеся последовательности генома эукариот.
- 6. Репарация ДНК и ее виды.
- 7. Транскрипция у эукариот и ее регуляция. Общая регуляция транскрипции на уровне хроматина.
- 8. Концепция «Мир РНК».
- 9. Индукция и механизмы апоптоза.
- 10. Определение нуклеотидных последовательностей ДНК.
- 11. Синтез ДНК и генетическая трансформация клеток бактерий.
- 12. Достижения и перспективы молекулярной биотехнологии.
- 13. Данные, опубликованные по программам «Геном человека», «1000 геномов», «Протеом человека».
- 14. Геном клеточных органелл эукариот.
- 15. Обратная транскрипция и ее применение в генетической инженерии.
- 16. Теломерные повторы в ДНК, ДНК-теломераза.
- 17. Молекулярные аспекты канцерогенеза.
- 18. Некодирующие РНК.
- 19. Роль ферментов в детоксикации ксенобиотиков.

- 20. РНК-интерференция.
- 21. Причины и последствия прионизации белков.
- 22. Современные представления о структуре рибосом.

Примерные темы лабораторных работ:

- 1. Определение концентрации белка по методу Лоури
- 2. Методы очистки белков
- 3. Электрофоретическое разделение белков в ПААГ
 - 1) Приготовление гелей для электрофореза
 - 2) Проведение электрофореза в ПААГ
 - 3) Анализ электрофореграмм
- 4. Полимеразная цепная реакция
 - 1) Выделение ДНК
 - 2) Амплификация выделенных фрагментов ДНК
 - 3) Визуализация продуктов амплификации и анализ электрофореграмм
- 5. Гель-фильтрация белков
- 6. Оценка качества препаратов ДНК

Задания по практической подготовке

1. Получение белковых экстрактов из тканей животных и растений

Примерные задания для подготовки к опросам

- 1. Методы молекулярной биологии. ПЦР, принцип метода. Организация лаборатории.
- 2. Методы определения первичной структуры ДНК. Определение первичной структуры белков.
- 3. Использование принципа комплементарности в гибридизации нуклеиновых кислот. ДНК-зонды и их применение.
- 4. РНК-содержащие вирусы. Структура и цикл развития ВИЧ.
- 5. ДНК-содержащие вирусы и фаги. Особенности структуры геномов фагов ϕX 174 и λ . Вирусы гепатита.
- 6. Особенности структуры геномов и генов бактерий. Перенос генетического материала у бактерий.
- 7. Структура геномов эукариот. Уникальные и повторяющиеся гены. Сателлитная ДНК. Структура хроматина и ее связь с функциональной активностью генома. ДНК-связывающие домены в белках, их типы.
- 8. Некодирующая ДНК. Роль в молекулярной эволюции. Особенности структуры ДНК клеточных органелл (митохондрий и хлоропластов).
- 9. Ферменты и белковые факторы, участвующие в репликации ДНК. Строение, функции и механизм действия ДНК-теломераз.
- 10. Регуляторные элементы генома эукариот. Энхансеры и регуляция транскрипции.
- 11. Подвижные генетические элементы прокариот. Мобильные диспергированные гены эукариот.
- 12. Особенности структуры генома человека. Программа «Геном человека». Задачи геномики и протеомики. Наследственные заболевания и их диагностика.
- 13. Молекулярные механизмы генетической рекомбинации. Сайт-специфическая рекомбинация.
- 14. Повреждения ДНК, их классификация и причины их возникновения. Активные формы кислорода, их возникновение и воздействие на структуру ДНК. Ферментные системы, участвующие в связывании АФК.
- 15. Механизмы репарации ДНК. Прямая и эксцизионная репарация. SOS-репарация. Ферментные системы, участвующие в репарации.
- 16. Индукция и механизмы апоптоза. Раковое перерождение клеток.
- 17. Онкогены, онкобелки и возможные механизмы их действия.

- 18. Ферменты, используемые в генетической инженерии. Ревертаза, рестриктазы, ДНК-полимеразы. Фрагмент Кленова.
- 19. Векторы молекулярного клонирования, их разнообразие и использование в генетической инженерии. Плазмиды, их свойства и использование в генетической инженерии.
- 20. Получение рекомбинантных ДНК и их клонирование в клетках бактерий.
- 21. ОТ. Открытие, применение. Синтез генов с использованием обратной транскриптазы.
- 22. Химический синтез генов и геномов. Работы Х.-Г. Корана и К Вентера.
- 23. Ферменты небелковой природы: каталитически активные антитела (абзимы), рибозимы, гибридозимы. Перспективы их применения.
- 24. Методы генетической инженерии. Получение инсулина, соматотропина, эритропоэтина, супероксиддисмутазы, моноклональных антител.

Примерные задания для тестирования

- 1. К методам молекулярной клинической диагностики относятся все, кроме:
 - 1) полимеразная цепная реакция
 - 2) гибридизация нуклеиновых кислот
 - 3) секвенирование ДНК
 - 4) рестрикционный анализ
 - 5) бактериологический посев
- 2. Какой естественный процесс существования клетки лежит в основе ПЦР:
 - 1) транскрипция
 - 2) трансляция
 - 3) репликация
 - 4) сплайсинг
- **3.** Молекулярно-генетическими маркерами для внутривидового типирования микроорганизмов являются:
 - 1) специфические сайты для эндонуклеаз
 - 2) плазмиды
 - 3) специфические последовательности ДНК, тестируемые с помощью зондов
 - 4) повторяющиеся последовательности ДНК
 - 5) конформационные изменения однонитевой ДНК (SSCP)
 - 6) всё перечисленное
- 4. Основными инструментами для генетического конструирования являются:
 - 1) протеазы
 - 2) изомеразы
 - 3) рестриктазы
 - 4) трансферазы
- **5.** При калибровке автоматических дозаторов масса одного миллилитра дистиллированной воды
 - 1) 1 г
 - 2) $1000 \pm 5 \text{ MT}$
 - 3) зависит от метода дистилляции
 - 4) зависит от температуры
- **6.** Прибор для проведения полимеразной цепной реакции и других термоциклических процессов называется:
 - 1) амплификатор;
 - 2) вортекс;
 - 3) трансиллюминатор;
 - 4) центрифуга
- 7. Для точного измерения величины водородного показателя раствора используют:
 - 1) спектрофотометр;
 - 2) <u>рН-метр;</u>

- 3) пикнометр;
- 4) флуориметр.
- 8. Процесс узнавания т-РНК своей аминокислоты называется
 - 1) сплайсинг
 - 2) процессинг
 - 3) рекогниция
 - 4) трансляция
- 9. Механизм преобразования пре-мРНК
 - 1) вырезаются все интроны, а экзоны сшиваются
 - 2) вырезаются все экзоны, а интроны сшиваются
 - 3) экзоны меняются местами с интронами
 - 4) мРНК становится длиннее проматричной
- **10.** Промотор это
 - 1) участок ДНК, регулирующий работу оперона
 - 2) участок ДНК, опознаваемый РНК-полимеразой
 - 3) участок ДНК, прекращающий движение РНК-полимеразы
 - 4) участок ДНК, отделяющий оператор от структурных генов
- 11. Подберите к каждой аминокислоте соответствующее свойство радикала.
 - 1) Фен
- А. Гидрофильный с анионной группой
- 2) Цис
- Б. Гидрофильный с катионной группой
- 3) Cep
- В. Гидрофобный
- 4) Глу
- Г. Полярный незаряженный
- **5)** Арг

Ответ: 1В, 2Г, 3Г, 4А, 5Б

12. Выберите один неправильный ответ.

Гидрофобные радикалы аминокислот чаще всего располагаются:

- 1) Внутри глобулярных цитозольных белков
- 2) В местах контактов протомеров олигомерных белков
- 3) На поверхности цитозольных белков
- 4) На поверхности интегральных мембранных белков
- 5) В активном центре белков
- 13. Выберите один неправильный ответ.

Шапероны:

- 1) Являются глобулярными белками
- 2) Связываются с частично денатурированными белками
- 3) Облегчают разрушение частично денатурированных белков
- 4) Находятся во всех отделах клетки
- 5) Их синтез усиливается при стрессовых воздействиях
- 14. Что общего между нативной и денатурированной рибонуклеазой:
 - 1) Первичная структура
 - 2) Конформация
 - 3) Строение активного центра
 - 4) Межрадикальные связи
 - 5) Функция
- 15. Выберите один неправильный ответ.

Белки денатурируют в результате:

- 1) Действия протеолитических ферментов
- 2) Повышения температуры
- 3) Изменения рН
- 4) Действия солей тяжелых металлов
- 5) Воздействия мочевины
- **16.** Выполните «цепное» задание.

- а) в формировании третичной структуры ДНК принимают участие:
 - 1) ТАТА-фактор
 - 2) Гистоны
 - 3) SSB-белки
- б) эти белки имеют суммарный заряд:
 - 1) Положительный
 - 2) Отрицательный
 - 3) Нейтральный
- в) заряд обусловлен присутствием в белке большого количества:
 - 1) Глу, Асп
 - 2) Лиз, Арг
 - 3) Лей, Фен
- г) эти белки входят в состав:
 - 1) Рибосом
 - 2) Нуклеосом
 - 3) Репликативного комплекса
- д) образование этих структур способствует:
 - 1) Репликации
 - 2) Компактизации ДНК
 - 3) Повышению отрицательного заряда ДНК
 - 4) Транскрипции
- 17. Установите соответствие.
 - 1. Фрагмент цепи ДНК

A. 5'-U-A

2. Содержит пуриновый и пиримидиновый нук-

Б. 5'-dG-dT

леотиды

3. Фрагмент цепи РНК

- В. Оба динуклеотида
- 4. Содержит остатки только пуриновых нуклео-
- Г. Ни один из динуклеотидов

тидов

Ответ: 1Б, 2В, 3А, 4Г

18. Выберите один неправильный ответ.

Молекула мРНК:

- 1) Построена из нуклеозидмонофосфатов
- 2) Имеет поли-А-последовательность на 3'-конце
- 3) Содержит равное количество уридиловых и адениловых нуклеотидов
- 4) На 5'-конце имеет «кэп»
- 5) Образует спирализованные участки
- 19. Выберите один правильный ответ.

ДНК-лигаза:

- 1) Не входит в состав репликативного комплекса
- 2) Синтезирует фрагменты цепей ДНК
- 3) «Сшивает» фрагменты Оказаки
- 4) Катализирует гидролиз 3',5'-фосфодиэфирной связи
- 5) Активируется ТАТА-фактором
- 20. Установите соответствие.
 - 1) Пре-тРНК

А. Образуется в ядре

2) **TPHK**

Б. Синтезируется при участии SSB-белков

3) Обе

В. Содержит специфическую последовательность -

ССА на 3'-конце

4) Ни одна

Г. Не содержит антикодоновой петли

Ответ: 1Г, 2В, 3А, 4Б

21. Выберите один правильный ответ.

Пре-мРНК:

- 1) Представляет собой полный транскрипт гена
- 2) Последовательность триплетов, кодирующих первичную структуру белка
- 3) На 5'-конце имеет поли-А-последовательность
- 4) Связывается с рибосомой в области колпачка
- 5) Выходит из ядра в цитоплазму
- 22. Выберите один неправильный ответ.

В ходе образования зрелой мРНК происходит:

- 1) Разрыв 3',5'-фосфодиэфирной связи в местах «вырезания» интронов
- 2) Взаимодействие пре-мРНК с мяРНП
- 3) Образование полиА-последовательности на 3'-конце мРНК
- 4) Присоединение к 5'-концу мРНК «кэпа»
- 5) Связывание мРНК с субъединицами рибосом
- 23. Выберите один неправильный ответ.

В процессе альтернативного сплайсинга:

- 1) Участвуют мяРНП
- 2) Осуществляется построение «кэпа» на 5'-конце
- 3) Происходит гидролиз 3',5'-фосфодиэфирной связи на границе экзон-интрон
- 4) мяРНП «сшивают» экзоны
- 5) Образуются «зрелые» мРНК с разной первичной структурой
- 24. Энхансер представляет собой:
 - 1) Участок ДНК, который может связываться с регуляторным белком и стимулировать транскрипцию
 - 2) ДНК-связывающий регуляторный белок
 - 3) Не транскрибируемый 5'-концевой участок РНК
 - 4) Транскрипционный фактор, связывающийся с РНК-полимеразой
 - 5) Ген, кодирующий строение белка, регулирующего транскрипцию
- **25.** В β-цепи одного из вариантов гемоглобина отсутствуют аминокислоты с 92-й по 94-ю. Это является результатом:
 - 1) Альтернативного сплайсинга пре-мРНК гемоглобина
 - 2) Делеции 3 нуклеотидов в гене β-цепи гемоглобина
 - 3) Делеции со сдвигом рамки считывания
 - 4) Образования мРНК гемоглобина, укороченной на 9 нуклеотидов
 - 5) Образования терминирующего кодона в положении 93 мРНК гемоглобина

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Освоение дисциплины предусматривает опрос, тестирование, выполнение лабораторных работ, выполнение заданий по практической подготовке, написание реферата, выполнение контрольного задания

Максимальное количество баллов по дисциплине - 100 баллов.

Максимальное количество баллов, которое может набрать студент в течение семестра за различные виды работ -70 баллов. Максимальная сумма баллов, которые студент может получить на экзамене -30. Промежуточная аттестация проводится в форме экзамена.

Экзамен проводится по вопросам. На экзамене студенты должны давать развернутые ответы на теоретические вопросы, проявляя умение делать самостоятельные обобщения и выводы, приводя достаточное количество примеров.

Шкала оценивания экзамена

Показатель	Балл
Полно раскрыто содержание материала в объеме программы; четко и пра-	21-30
вильно даны определения и раскрыто содержание понятий; верно использо-	
ваны научные термины; для доказательства использованы различные уме-	
ния, выводы из наблюдений и опытов; ответ самостоятельный, использова-	
ны ранее приобретенные знания.	
Раскрыто основное содержание материала; в основном правильно даны	11-20
определения понятий и использованы научные термины; определения поня-	
тий неполные, допущены незначительные нарушения последовательности	
изложения, небольшие неточности при использовании научных терминов	
или в выводах и обобщениях из наблюдений и опытов.	
Усвоено основное содержание учебного материала, но изложено фрагмен-	5-10
тарно, не всегда последовательно; определения понятий недостаточно чет-	
кие; не использованы в качестве доказательства выводы и обобщения из	
наблюдений и опытов или допущены ошибки при их изложении; допущены	
ошибки и неточности в использовании научной терминологии, определении	
понятий.	
Основное содержание вопроса не раскрыто; не даны ответы на вспомога-	0-5
тельные вопросы; допущены грубые ошибки в определении понятий, при	
использовании терминологии.	

Итоговая шкала выставления оценки по дисциплине

Итоговая оценка по дисциплине выставляется по приведенной ниже шкале. При выставлении итоговой оценки преподавателем учитывается работа студента в течение всего срока освоения дисциплины, а также баллы, полученные на промежуточной аттестации.

Баллы, полученные обучающимся в тече-	Оценка по дисциплине	
ние освоения дисциплины		
81-100	отлично	
61-80	хорошо	
41-60	удовлетворительно	
0-40	Не удовлетворительно	

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ 6.1. Основная литература:

- 1. Коничев, А. С. Молекулярная биология: учебник для вузов / А. С. Коничев, Г. А. Севастьянова, И. Л. Цветков. 5-е изд. Москва: Юрайт, 2021. 422 с. Текст: электронный. URL: https://urait.ru/bcode/459165
- 2. Молекулярная биология. Практикум: учебное пособие для вузов / под ред. А. С. Коничева. 2-е изд. Москва: Юрайт, 2021. 169 с. Текст: электронный. URL: https://urait.ru/bcode/475012

6.2. Дополнительная литература:

- 1. Баженова, И.А. Основы молекулярной биологии: теория и практика: учеб. пособие / И. А. Баженова, Т. А. Кузнецова. СПб.: Лань, 2018. 140с. Текст: непосредственный
- 2. Биология в 2 ч.: учебник для вузов / под ред. В. Н. Ярыгина, И. Н. Волкова. 7-е изд. Москва: Юрайт, 2021. Текст: электронный. URL: https://urait.ru/bcode/470631, https://urait.ru/bcode/470632
- 3. . Ершов, Ю. А. Биохимия: учебник и практикум для вузов / Ю. А. Ершов, Н. И. Зайцева. 2-е изд. Москва: Юрайт, 2021. 323 с. Текст: электронный. URL: https://urait.ru/bcode/469840
- 4. Колесников, Е. Ю. Оценка воздействия на окружающую среду. Экспертиза безопасности: учебник и практикум для вузов / Е. Ю. Колесников, Т. М. Колесникова. 2-е изд. Москва: Юрайт, 2021. 469 с. Текст: электронный. URL: https://urait.ru/bcode/468928
- 3. Комов, В. П. Биохимия: учебник для вузов / В. П. Комов, В. Н. Шведова. 4-е изд. Москва: Юрайт, 2021. 684 с. Текст: электронный. URL: https://urait.ru/bcode/477904
- 4. Спирин, А. С. Молекулярная биология. Рибосомы и биосинтез белка: учебное пособие / Спирин А. С. Москва: Лаборатория знаний, 2019. 594 с. ISBN 978-5-00101-623-6. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785001016236.html
- 5. Прошкина, Е. Н. Молекулярная биология: стресс-реакции клетки: учебное пособие для вузов / Е. Н. Прошкина, И. Н. Юранева, А. А. Москалев. Москва: Юрайт, 2021. 101 с. Текст: электронный. URL: https://urait.ru/bcode/473783
- 6. Якупов, Т.Р. Молекулярная биотехнология: учебник для вузов / Т. Р. Якупов, Т. Х. Фаизов. СПб.: Лань, 2019. 160с. Текст: непосредственный.

6.3. Ресурсы информационно-телекоммуникационной сети «Интернет»:

- http://www.chem.msu.ru/rus/elibrary/welcome.html электронная библиотека учебных материалов по химии
- http://www.genom.gov Национальный исследовательский институт генома человека новейшая информация по исследованию генома человека
- https://ido.tsu.ru виртуальный лабораторный практикум: справочник
- http://www.evolbiol.ru информационно-образовательный портал
- https://www.booksite.ru учебник по биологической химии
- http://elementy.ru/catalog/t51/Biokhimiya базы данных по биологической химии
- http://humbio.ru базы данных по биологии человека
- http://www.ncbi.nlm.nih.gov/ банк данных по первичным структурам нуклеиновых кислот
- https://www.embl.de/ базы учебных и научных материалов по биологической химии
- https://www.ddbj.nig.ac.jp/ база данных по исследованиям в области биологической химии
- http://erop.inbi.ras.ru/ база данных по природным олигопептидам
- http://genefunction.ru/public_results электронная система аннотации бактериальных генов
- https://toukach.ru/rus/csdb.htm база данных по структурам природных углеводов
- http://www.uniprot.org/ база данных о белках и их функциях
- http://www-nbrf.georgetown.edu/ база данных по первичным последовательностям и пространственной структуре белков

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

- 1. Методические рекомендации по подготовке к практическим и лабораторным занятиям
- 2. Методические рекомендации по организации самостоятельной работы студентов

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows Microsoft Office Kaspersky Endpoint Security

Информационные справочные системы:

Система ГАРАНТ Система «КонсультантПлюс»

Профессиональные базы данных:

fgosvo.ru – Портал Федеральных государственных образовательных стандартов высшего образования

pravo.gov.ru - Официальный интернет-портал правовой информации

www.edu.ru - Федеральный портал Российское образование

Свободно распространяемое программное обеспечение, в том числе отечественного производства

ОМС Плеер (для воспроизведения Электронных Учебных Модулей) 7-zip Google Chrome

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения занятий лекционного и семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные учебной мебелью, доской, демонстрационным оборудованием;
- помещения для самостоятельной работы, укомплектованные учебной мебелью, персональными компьютерами с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду
- лаборатория, оснащенная оборудованием: персональными компьютерами с подключением к сети Интернет, наборами демонстрационного оборудования и учебно-наглядными пособиями.