Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Дата подписания: 10.06.2025 10 МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Уникальтый пред тосу дарственное автономное образовательное учреждение высшего образования

6b5279da4e034bff679172803da5hф6@УДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ» (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ)

> Физико-математический факультет Кафедра фундаментальной физики и нанотехнологии

Согласовано

деканом физико-математического факультета

«19» марта 2025 г.

/Кулешова Ю.Д.

Рабочая программа дисциплины

Молекулярная физика (практикум)

Направление подготовки

03.03.02 Физика

Квалификация

Бакалавр

Форма обучения

Очная

Согласовано учебно-методической комиссией физико-математического факультета

Протокол «19» марта 2025 г. № *Д/*/

Председатель УМКом_

/Кулешова ЮД

Рекомендовано кафедрой фундаментальной физики и нанотехнологии

Протокол от «11» марта 2025 г. № 11

Зав. кафедрой____

/Холина С.А./

Москва 2025

Авторы-составители:

Барабанова Н.Н., кандидат физико-математических наук, доцент, Васильчикова Е.Н., кандидат физико-математических наук, доцент, Емельянов В.А., кандидат физико-математических наук, доцент.

Рабочая программа дисциплины «Молекулярная физика (практикум)» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 03.03.02 Физика, утвержденного приказом МИНОБРНАУКИ РОССИИ от 07.08.2020 г. № 891.

Дисциплина входит в модуль «Общий и специальный физический практикум» обязательной части Блока 1 «Дисциплины (модули)» и является обязательной для изучения.

Год начала подготовки (по учебному плану) 2025

СОДЕРЖАНИЕ

		стр.
1.	Планируемые результаты обучения	4
2.	Место дисциплины в структуре образовательной программы	4
3.	Объем и содержание дисциплины	4
4.	Учебно-методическое обеспечение самостоятельной работы обучающихся	7
5.	Фонд оценочных средств для проведения текущей и промежуточной	9
	аттестации по дисциплине	
6.	Учебно-методическое и ресурсное обеспечение дисциплины	14
7.	Методические указания по освоению дисциплины	15
8.	Информационные технологии для осуществления образовательного	15
	процесса по дисциплине	
9.	Материально-техническое обеспечение дисциплины	16

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цель и задачи дисциплины

Цель освоения дисциплины: формирование систематизированных знаний в области общей и экспериментальной физики, формирование и совершенствование у студентов навыков экспериментальной деятельности.

Задачи дисциплины: изучение основных законов электричества и магнетизма, приобретение навыков осуществления учебного и научного эксперимента, оценки результатов эксперимента, подготовки отчетных материалов о проведенной исследовательской работе.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

ОПК-2. Способен проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальные данные.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Молекулярная физика (практикум)» входит в модуль «Общий и специальный физический практикум» обязательной части Блока 1 «Дисциплины (модули)» и является обязательной для изучения.

Для освоения дисциплины «Молекулярная физика (практикум)» используются знания, умения и виды деятельности, сформированные в процессе изучения следующих дисциплин: «Общая физика: Механика», «Математический анализ». Освоение данной дисциплины является необходимой основой для изучения таких дисциплин, как «Специальный физический практикум», «Теоретическая физика».

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Показатель объема дисциплины	Форма обучения
	Очная
Объем дисциплины в зачетных единицах	4
Объем дисциплины в часах	144
Контактная работа	60,2
Лабораторные занятия	60
из них, в форме практической подготовки	60
Контактные часы на промежуточную аттестацию:	0,2
Зачет	0,2
Самостоятельная работа	76
Контроль	7,8

Формой промежуточной аттестации является: зачет в 3 семестре.

3.2. Содержание дисциплины

Наименование разделов (тем) дисциплины с кратким содержанием	Количество часов
--	------------------

	Лабораторні	ые занятия
	Общее кол- во	из них, в форме практичес кой подготовк и
Тема 1. Основные представления молекулярно- кинетической теории газов. Идеальный газ. Основное уравнение кинетической теории газов. Газовые законы.	5	5
Тема 2. Основы термодинамики. Применение первого начала термодинамики к изопроцессам. Внутренняя энергия и работа газа.	5	5
Тема 3. Работа и теплота как формы обмена энергией между системами. Квазистатические процессы. Взаимодействие термодинамических систем.	5	5
Тема 4. Теплоемкость. Виды теплоемкости. Классическая теория и эксперимент. Теорема Нернста.	5	5
Тема 5. Циклические процессы. Второе начало термодинамики. Понятие энтропии термодинамической системы.	5	5
Тема 6. Распределение молекул газа по скоростям. Идеальный газ во внешнем потенциальном поле. Броуновское движение. Распределение Максвелла – Больцмана. Барометрическая формула. Броуновское движение.	5	5
 Тема 7. Распределение энергии молекул по степеням свободы. Флуктуации в идеальном газе и их проявление. Статистическое истолкование второго начала термодинамики. 	5	5
Тема 8. Явления переноса. Внутреннее трение. Теплопроводность. Теплопроводность и внутреннее трение при низком давлении. Методы измерения низких давлений.	5	5
Тема 9. Реальные газы. Уравнение Ван-дер-Ваальса. Внутренняя энергия реального газа. Критическое состояние. Закон соответственных состояний.	5	5
Тема 10. Жидкости. Свойства жидкого состояния. Ближний порядок. Поверхностные явления в жидкостях. Смачивание. Капиллярные явления. Осмотическое давление.	5	5
Тема 11. Фазовые переходы первого и второго рода. Равновесие жидкости и пара. Влажность. Уравнение Клапейрона-Клаузиуса. Плавление и кристаллизация.	5	5
Тема 12. Твердые тела. Упругие свойства кристаллов, тепловое расширение.	5	5

Теплоемкость кристаллов. Жидкие кристаллы (классификация, тепловые свойства, полимезоморфизм). Полимеры.		
Итого:	60	60

ПРАКТИЧЕСКАЯ ПОДГОТОВКА

Тема	Задание на практическую подготовку	количество часов
Тема 1. Основные представления	Выполнение лабораторной	писов
молекулярно-кинетической теории	работы	
газов.	pacora	_
Идеальный газ. Основное уравнение		5
кинетической теории газов. Газовые		
законы.		
Тема 2. Основы термодинамики.	Выполнение лабораторной	
Первое начало термодинамики.	работы	
Применение первого начала	F	5
термодинамики к изопроцессам.		
Внутренняя энергия и работа газа.		
Тема 3. Работа и теплота как	Выполнение лабораторной	
формы обмена энергией между	работы	
системами.	_	~
Квазистатические процессы.		5
Взаимодействие термодинамических		
систем.		
Тема 4. Теплоемкость.	Выполнение лабораторной	
Виды теплоемкости. Классическая	работы	~
теория и эксперимент. Теорема	1	5
Нернста.		
Тема 5. Циклические процессы.	Выполнение лабораторной	
Второе начало термодинамики.	работы	5
Понятие энтропии		3
термодинамической системы.		
Тема 6. Распределение молекул	Выполнение лабораторной	
газа по скоростям. Идеальный газ	работы	
во внешнем потенциальном поле.		
Броуновское движение.		5
Распределение Максвелла -		
Больцмана. Барометрическая		
формула. Броуновское движение.		
Тема 7. Распределение энергии	Выполнение лабораторной	
молекул по степеням свободы.	работы	
Флуктуации в идеальном газе и их		5
проявление. Статистическое		5
истолкование второго начала		
термодинамики.		
Тема 8. Явления переноса.	Выполнение лабораторной	
Внутреннее трение.	работы	
Теплопроводность.		5
Теплопроводность и внутреннее		J
трение при низком давлении.		
Методы измерения низких давлений.		

Тема 9. Реальные газы.	Выполнение лабораторной	
Уравнение Ван-дер-Ваальса.	работы	
Внутренняя энергия реального газа.		5
Критическое состояние. Закон		
соответственных состояний.		
Тема 10. Жидкости.	Выполнение лабораторной	
Свойства жидкого состояния.	работы	
Ближний порядок. Поверхностные		5
явления в жидкостях. Смачивание.		J
Капиллярные явления. Осмотическое		
давление.		
Тема 11. Фазовые переходы	Выполнение лабораторной	
первого и второго рода.	работы	
Равновесие жидкости и пара.		5
Влажность. Уравнение Клапейрона-		3
Клаузиуса. Плавление и		
кристаллизация.		
Тема 12. Твердые тела.	Выполнение лабораторной	
Упругие свойства кристаллов,	работы	
тепловое расширение. Теплоемкость		5
кристаллов. Жидкие кристаллы		3
(классификация, тепловые свойства,		
полимезоморфизм). Полимеры.		

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ CAMOCTOЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Темы для самостоятельного изучения	Изучаемые вопросы	Кол- во часов	Формы самост. работы	Методич. обеспечение	Форма отчетности
1.Основные представления молекулярно— кинетической теории газов.	Экспериментальное обоснование молекулярно— кинетической теории вещества. Молекулярно— кинетическое истолкование абсолютной температуры и давления. Измерение температуры.	6	Конспект	[6.1], [6.2], [6.3]	Доклад
2.Основы термодинамики.	Термодинамическое равновесие. Взаимодействие термодинамических систем.	6	Конспект, решение задач	[6.1], [6.2], [6.3]	Домашнее задание [1] 1-8, 1- 12, 2-20, 2- 22. [2] 1.13, 1.14, 1.24, 1.30.
3.Работа и теплота как формы обмена	Квазистатические процессы.	6	Конспект, решение	[6.1], [6.2], [6.3]	Домашнее задание

энергией между системами. Первый закон термодинамики.	Применение первого закона термодинамики к изопроцессам.		задач		[1] 1.56, 1.58
4.Теплоемкость. Классическая теория и эксперимент. Вывод уравнения адиабаты.	Скорость звука в газе. Квантовые представления	6	Конспект, решение задач	[6.1], [6.2], [6.3]	Домашнее задание [1] 1.61, 1.62, 1.63.
5.Второй закон термодинамики.	Реальные циклы. Неосуществимость вечных двигателей. Теорема Нернста. Недостижимость абсолютного нуля.	6	Конспект, решение задач	[6.1], [6.2], [6.3]	Домашнее задание [1] 12.1- 12.4
6.Распределение скоростей по Максвеллу.	Измерение скоростей молекул, опыт Штерна.	6	Конспект, решение задач	[6.1], [6.2], [6.3]	Домашнее задание [1] 3.13 [2] 2.28, 2.30, 2.32, 2.35, 2.56, 2.50.
7. Распределение энергии молекул по степеням свободы. Распределение Максвелла— Больцмана.	Флуктуации в идеальном газе и их проявление. Экспериментальное определение постоянной Авогадро.	6	Конспект, решение задач	[6.1], [6.2], [6.3]	Домашнее задание [1] 3-41, 3-31, 3-25, 3-34, 3-28. [2] 2.87, 2.83, 2.84, 2.91.
8.Явление переноса в газах.	Средняя длина и среднее время свободного пробега молекул. Самодиффузия. Теплопроводность и внутреннее трение при низком давлении, технический вакуум. Методы измерения низких давлений.	6	Конспект, решение задач	[6.1], [6.2], [6.3]	Домашнее задание [1] 3-41, 3-31, 3-25, 3-34, 3-28. [2] 2.87, 2.83, 2.84, 2.91.
9.Реальные газы. Уравнение Ван- дер-Ваальса.	Экспериментальные изотермы реального газа. Сопоставление изотерм Ван-дер-Ваальса с экспериментальными изотермами. Сжижение газов и получение низких температур.	6	Конспект, решение задач	[6.1], [6.2], [6.3]	Домашнее задание [1] 4-28, 4-26, 4-32, 4-35. [2] 3.6, 3.12, 3.19, 3.21.

10.Свойства жидкого состояния.	Близкий порядок. Фундаментальные эксперименты. Растворы, вода, особенности физических свойств.	6	Конспект, решение задач	[6.1], [6.2], [6.3]	Домашнее задание [1] 8-36, 8-25, 8-22. [2] 12.18, 12.2, 12.12, 12.65, 12.60, 12.62.
11.Фазовые переходы. Уравнение Клапейрона— Клазиуса.	Равновесие жидкости и пара. Влажность.	8	Конспект, решение задач	[6.1], [6.2], [6.3]	Домашнее задание [1] 4-20, 4-23, 4-29, 4-30, 4-25, 4-26, 4-38. [2] 3.10, 3.13, 3.17, 3.25, 3.38, 3.40.
12.Твердые тела. Жидкие кристаллы (классификация, тепловые свойства, полиморфизм).	Аморфные и кристаллические тела. Дальний порядок в кристаллах. Затруднения классической физики в объяснении температурной зависимости теплоемкости твердых тел. Основы квантовых представлений.	8	Конспект	[6.1], [6.2], [6.3]	Доклад
Итого	*	76			

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код и наименование компетенции			Этапы формирования
ОПК-2. Способен проводить научные исследовани			1. Работа на учебных занятиях.
физических объекто	ов, систем и процессов,	обрабатывать	2. Самостоятельная работа.
и представлять экспе	ериментальные данные.	•	

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оценива	Урове	Этапы	Описание	Критерии	Шкал
емые	НЬ	формирова	показателей	оценивания	a
компете	сфор	ния			оцени
нции	миров				вания
	аннос				

	ТИ				
ОПК-2	Порог	1. Работа	Знать: методы планирования и	домашнее	Шкал
	овый	на учебных	осуществления учебного	задание,	a
		занятиях.	эксперимента, оценки результатов	доклад	оцени
		2.	эксперимента, подготовки		вания
		Самостояте	отчетных материалов в рамках		дома
		льная	изучаемой дисциплины при работе		шнего
		работа.	в группах.		задан
			Уметь: грамотно планировать и		КИ
			осуществлять учебный		Шкал
			эксперимент, проводить оценку		a
			его результатов, подготавливать		оцени
			отчетные материалы в рамках		вания
			изучаемой дисциплины при работе		докла
			в группах.		да
	Прод	1. Работа	Знать: методы планирования и	домашнее	Шкал
	винут	на учебных	осуществления учебного	задание,	a
	ый	занятиях.	эксперимента, оценки результатов	доклад,	оцени
		2.	эксперимента, подготовки	практическая	вания
		Самостояте	отчетных материалов в рамках	подготовка	дома
		льная	изучаемой дисциплины при работе		шнего
		работа.	в группах.		задан
			Уметь: грамотно планировать и		РИ
			осуществлять учебный		Шкал
			эксперимент, проводить оценку		a
			его результатов, подготавливать		оцени
			отчетные материалы в рамках		вания
			изучаемой дисциплины при работе		докла
			в группах. Владеть: организационно-		да Шкал
			Владеть: организационно- управленческими навыками при		а
			работе в научных группах и		оцени
			других малых коллективах		вания
			исполнителей.		практ
			nenominitore.		ическ
					ой
					подго
					товки
		1			LODKI

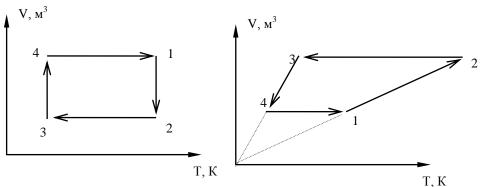
Шкала и критерии оценивания домашних работ

Уровни оценивания	Критерии оценивания	Баллы
Высокий (отлично)	Если студент решил 71-90% от всех домашних работ	8-10
Оптимальный (хорошо)	Если студент решил 51-70% от всех домашних работ	5-7
Удовлетворительный	Если студент решил 31-50% от всех домашних работ	2-4
Неудовлетворительный	Если студент решил 0-30% от всех домашних работ	0-1

Шкала и критерии оценивания написания доклада

	шкала и критерии оценивания написания доклада			
Уровни оценивания		Критерии оценивания	Баллы	
Высокий (отлично)		Если студент отобразил в докладе 71-90% выбранной	8-10	
		темы.		
	Оптимальный (хорошо)	Если студент отобразил в докладе 51-70% выбранной	5-7	
		темы		

Удовлетворительный	Если студент отобразил в докладе 31-50% выбранной	
	темы	
Неудовлетворительный	Если студент отобразил в докладе 0-30% выбранной темы	0-1


Шкала и критерии оценивания практической подготовки

Уровни оценивания	Критерии оценивания	Баллы
Высокий (отлично)	Если студент выполнил 71-90% от всех практических	16-20
	работ	
Оптимальный (хорошо)	Если студент выполнил 51-70% от всех практических	11-15
	работ	
Удовлетворительный	Если студент выполнил 31-50% от всех практических	6-10
	работ	
Неудовлетворительный	Если студент выполнил 0-30% от всех практических	0-5
	работ	

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерный вариант домашней работы:

1. Провести анализ и изобразить представленные циклы в остальных системах координат.

- 2. На дне пруда выделился пузырек газа диаметром 4 мм. При подъеме этого пузырька с поверхности воды его диаметр увеличился в 1.1 раза. Найти глубину пруда в данном месте. Атмосферное давление считать нормальным, процесс расширения газа изотермическим.
- 3. Барометр Торричелли дает неверные показания вследствие присутствия небольшого количества воздуха над столбиком ртути. При давлении 755 мм рт ст барометр показывает 748 мм рт ст, а при 740 мм рт ст он показывает 736 мм рт ст. Найти длину трубки барометра.
- 4. Поршневой насос при каждом качании захватывает объем υ_0 воздуха. При откачке этим насосом из сосуда объема V насос совершил п качаний. Начальное давление внутри сосуда p_0 и равно атмосферному. Затем другой насос с тем же рабочим объемом υ_0 начал нагнетать воздух из атмосферы, совершив также п качаний. Какое давление установится в сосуде?
- 5. Пылинки, взвешенные в воздухе, имеют массу 10^{-18} г. Во сколько раз уменьшится их концентрация при увеличении высоты на 10м? Температура воздуха 300 К.

Задание на практическую подготовку

Выполнение лабораторных работ:

Работа № 1. Определение температурного коэффициента давления воздуха при различных температурах.

Работа № 2. Определение показателя Пуассона воздуха.

- Работа № 3. Определение удельной теплоты перехода воды в пар при температуре кипения.
- Работа № 4. Изучение зависимости температуры кипения воды от внешнего давления.
- Работа № 5. Изучение зависимости давления насыщенного водяного пара от температуры.
- Работа № 7. Определение влажности воздуха и постоянной психрометра Ассмана.
- Работа № 8. Определение критической температуры этилового эфира.
- Работа № 9. Определение коэффициента поверхностного натяжения жидкости методом измерения максимального избыточного давления в пузырьках воздуха.
- Работа № 10. Определение коэффициента динамической вязкости воздуха.

Примерные темы докладов

- 1. Тепловой и динамический расчет двигателя внутреннего сгорания Тепловые двигатели.
- 2. Двигатели Стирлинга. Области применения.
- 3. Реактивные двигатели и основы работы тепловой машины.
- 4. Результаты экспериментальной оценки эффективности применения баллиститного ракетного топлива в качестве сенсибилизаторов в эмульсионных ВВ.
- 5. Решение обратных задач теплопроводности для элементов конструкций простой геометрической формы
- 6. Стохастичность и нелинейность систем. Неравновесность систем. Энтропия.
- 7. Тепловые, гидравлические и атомные электростанции.
- 8. Карбюраторные двигатели.
- 9. Плазма-четвертое состояние вещества.
- 10. Фазовое равновесие и фазовые превращения.
- 11. Вечные двигатели.
- 12. Влияние вращательного и поступательного движения молекул на теплоемкость многоатомных газов.
- 13. Генератор электроэнергии на броуновском движении.
- 14. Физическое описание явления фильтрации жидкости.

Примерный список вопросов к зачету

- 1.Идеальный газ. Уравнение состояния идеального газа.
- 2.Понятие температуры. Методы ее измерения. Абсолютная температура.
- 3.Изопроцессы. Газовые законы. Температурный коэффициент давления. Изотермическая сжимаемость. Изотермический модуль объемной упругости.
- 4.Термодинамическая система. Термодинамическое равновесие. Нулевое начало термодинамики. Внутренняя энергия. Работа и теплота. Первое начало термодинамики.
- 5. Понятие теплоемкости. Теплоемкость идеальных газов, одно-, двух- и многоатомных газов.
- 6.Адиабатический процесс. Адиабатная сжимаемость идеального газа. Вывод уравнения адиабаты.
- 7. Парообразование, сублимация, плавление и кристаллизация. Аморфные тела.
- 8. Фазовые переходы первого и второго рода. Уравнение Клапейрона-Клаузиуса.
- 9.Политропический процесс. Адиабатная сжимаемость идеального газа.
- 10. Обратимые и необратимые процессы. Второе начало термодинамики. Приведенная теплота. Энтропия. Статистическое истолкование второго начала термодинамики. Теорема Нернста.
- 11. Идеальные тепловые машины. Цикл Карно. Теоремы Карно.
- 12. Испарение и кипение жидкостей.
- 13. Диаграмма состояния. Тройная точка.

- 14. Равновесие жидкости и пара. Насыщенный пар. Перенасыщенный пар и перегретая жидкость.
- 15. Влажность воздуха.
- 16. Реальные (неидеальные) газы. Уравнение Ван-дер-Ваальса.
- 17. Приведенное уравнение Ван-дер-Ваальса. Закон соответственных состояний.
- 18. Критическая температура. Критическое состояние. Методы определения критических параметров.
- 19. Жидкость. Свободная поверхность жидкости. Поверхностное натяжение.
- 20. Капиллярные явления. Формула Лапласа.
- 21. Растворы. Осмотическое давление. Закон Вант-Гоффа. Сверхтекучесть.
- 22. Средняя длина и среднее время свободного пробега молекул. Диффузия. Диффузия в идеальных газах. Коэффициент диффузии.
- 23. Теплопроводность. Теплопроводность идеального газа. Коэффициент теплопроводности.
- 24. Вязкость (внутреннее трение). Вязкость идеального газа. Коэффициент вязкости. Связь между коэффициентами переноса.

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Оценивание степени освоения обучающимися дисциплины осуществляется на основе «Положение о балльно-рейтинговой системе оценки успеваемости студентов МГОУ», утвержденного решением Ученого совета МГОУ от 20 февраля 2012 г. протокол № 4:

Сопоставимость рейтинговых показателей студента по разным дисциплинам и Балльно-рейтинговой системы оценки успеваемости студентов обеспечивается принятием единого механизма оценки знаний студентов, выраженного в баллах, согласно которому 100 баллов — это полное усвоение знаний по учебной дисциплине, соответствующее требованиям учебной программы.

Максимальный результат, который может быть достигнут студентом по каждому из Блоков рейтинговой оценки – 100 баллов.

В зачетно-экзаменационную ведомость и зачетную книжку выставляются оценки по пятибалльной шкале и рейтинговые оценки в баллах.

При получении студентом на зачёте неудовлетворительной оценки в ведомость выставляется рейтинговая оценка в баллах (<40 баллов), соответствующая фактическим знаниям (ответу) студента.

Критерии оценки знаний студентов в рамках каждой учебной дисциплины или групп дисциплин вырабатываются преподавателями согласованно на кафедрах Университета исходя из требований образовательных стандартов.

Шкала оценивания зачета

Критерии оценивания	Баллы	
Полные и точные ответы на все вопросы. Свободное владение основными		
терминами и понятиями курса; последовательное и логичное изложение		
материала курса; законченные выводы и обобщения по теме вопросов;	8-20	
исчерпывающие ответы на вопросы.		
Ответ на менее половины вопросов.		

Итоговая шкала оценивания результатов освоения дисциплины

Итоговая оценка по дисциплине выставляется по приведенной ниже шкале. При выставлении итоговой оценки преподавателем учитывается работа обучающегося в течение

освоения дисциплины, а также оценка по промежуточной аттестации.

Количество баллов	Оценка по традиционной шкале
81-100	Зачтено
61-80	Зачтено
41-60	Зачтено
0-40	Не зачтено

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная литература

1. Кикоин, И.К. Молекулярная физика: учеб.пособие для вузов / А. К. Кикоин, И. К. Кикоин. - 4-е изд., стереотип. - СПб. : Лань, 2019. - 480с. — Текст: непосредственный.

Кикоин, А. К. Молекулярная физика : учебное пособие / А. К. Кикоин, И. К. Кикоин. — 4-е изд., стер. — Санкт-Петербург : Лань, 2022. — 480 с. — ISBN 978-5-8114-0737-8. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/210119 (дата обращения: 23.03.2024). — Режим доступа: для авториз. пользователей.

2. Савельев И.В. Курс общей физики : учеб. пособие: в 3-х т. / И. В. Савельев. — 15-е изд., стереот. — СПб: Лань, 2019. — Текст: непосредственный.

Савельев, И. В. Курс общей физики. В 3 т. Том 1. Механика. Молекулярная физика : учебник для вузов / И. В. Савельев. — 18-е изд., стер. — Санкт-Петербург : Лань, 2022. — 436 с. — ISBN 978-5-8114-9890-1. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/221120 (дата обращения: 23.03.2024). — Режим доступа: для авториз. пользователей.

3. Зисман, Г.А. Курс общей физики: учеб.пособие для вузов в 3-х т. / Г. А. Зисман, О. М. Тодес. - 7-е изд., стереотип. - СПб. : Лань, 2019. - 504с. — Текст: непосредственный.

Зисман, Г. А. Курс общей физики. В 3 томах. Том 1. Механика. Молекулярная физика. Колебания и волны / Г. А. Зисман, О. М. Тодес. — 10-е изд., стер. — Санкт-Петербург : Лань, 2023. — 340 с. — ISBN 978-5-507-47026-6. — Текст : электронный // Лань : электроннобиблиотечная система. — URL: https://e.lanbook.com/book/320777 (дата обращения: 23.03.2024). — Режим доступа: для авториз. пользователей.

6.2 Дополнительная литература

- 1. Барабанова, Н.Н. Лабораторный практикум: молекулярная физика : сб.лаб.работ Барабанова Н.Н.,сост. М. : МГОУ, 2014. 40с. Текст: непосредственный.
- 2. Башлачев Ю.А. Фундаментальные эксперименты физики: курс лекций / Ю. А. Башлачев, Д. Л. Богданов. М. : ЛЕНАНД, 2012. 240с. Текст: непосредственный.
- 3. Васильчикова, Е.Н. Элементарная физика: Справочник:определения физические величины,законы,справочные таблицы / Е. Н. Васильчикова, Н. И. Кошкин. Москва : Столетие, 1996. 304с. Текст: непосредственный.
- 4. Волькенштейн В.С. Сборник задач по общему курсу физики: учеб. пособие для втузов / Волькенштейн В.С. 12-е изд.,исправ. М. : Наука, 1996. 400с. Текст: непосредственный.
- 5. Иродов, И.Е. Сборник задач по общему курсу физики. / И.Е. Иродов. М., 2007.
- 6. Матвеев, А.Н. Молекулярная физика, [Текст] / А.Н. Матвеев. М., 2010.
- 7. Пиралишвили, Ш. А. Молекулярная физика. Термодинамика. Конденсированные состояния : учебное пособие для вузов / Ш. А. Пиралишвили, Е. В. Шалагина. 3-е изд., стер. Санкт-Петербург : Лань, 2022. 200 с. ISBN 978-5-507-44597-4. Текст :

электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/238496 (дата обращения: 23.03.2024). — Режим доступа: для авториз. пользователей.

- 8. Сахаров, Д.И. Сборник задач по физике: для вузов / Д. И. Сахаров. 13-е изд.,доп. М. : Оникс 21 век, 2003. 400с. Текст: непосредственный.
- 9. Сборник задач по общему курсу физики. Книга II. Термодинамика и молекулярная физика / Гинзбург В. Л. , Левин Л. М. , Сивухин Д. В. , Яковлев И. А. ; Под ред. Д. В. Сивухина. 5-е изд. , стер. Москва : ФИЗМАТЛИТ, 2006. 176 с. ISBN 5-9221-0603-1. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN5922106031.html (дата обращения: 23.03.2024). Режим доступа : по подписке.
- 10. Сивухин, Д. В. Общий курс физики. Т. II. Термодинамика и молекулярная физика. : учебное пособие : Для вузов. / Сивухин Д. В. Москва : ФИЗМАТЛИТ, 2006. 544 с. ISBN 5-9221-0601-5. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN5922106015.html (дата обращения: 23.03.2024). Режим доступа : по подписке.
- 11. Трофимова, Т.И. Курс физики: с примерами решения задач: учебник для вузов в 2-х т. / Т. И. Трофимова, А. В. Фирсов. М.: Кнорус, 2015. 378с. Текст: непосредственный.

6.3 Ресурсы информационно-телекоммуникационной сети «Интернет»

- 1. http://mgou.ru/index.php?option=com_content&task=view&id=48&Itemid=614
- 2. Научная электронная библиотека http://elibrary.ru

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЕЮ ДИСЦИПЛИНЫ

- 1. Методические рекомендации по подготовке к практическим занятиям.
- 2. Методические рекомендации по организации самостоятельной работы по дисциплинам.

8.ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows

Microsoft Office

Kaspersky Endpoint Security

Информационные справочные системы:

Система ГАРАНТ

Система «КонсультантПлюс»

Профессиональные базы данных

fgosvo.ru – Портал Федеральных государственных образовательных стандартов высшего образования

pravo.gov.ru - Официальный интернет-портал правовой информации

www.edu.ru – Федеральный портал Российское образование

Свободно распространяемое программное обеспечение, в том числе отечественного производства

ОМС Плеер (для воспроизведения Электронных Учебных Модулей)

7-zip

Google Chrome

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения учебных занятий, оснащенные оборудованием и техническими средствами обучения: учебной мебелью, доской, демонстрационным оборудованием, персональными компьютерами, проектором;
- помещения для самостоятельной работы, оснащенные компьютерной техникой с возможностью подключением к сети «Интернет» и обеспечением доступа к электронной информационно-образовательной среде.