Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Дата подписания: 08.09.2025 10:21:49

Уникальный программны МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
6b5279da4e034bff679172803da5b7b559fc69e2

6b5279da4e03Федеральное государственное автономное образовательное учреждение высшего образования

«ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ» (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ)

Физико-математический факультет Кафедра высшей алгебры, математического анализа и геометрии

УТВЕРЖДЕН

на заседании кафедры высшей алгебры, математического анализа и геометрии Протокол от «18» № 2025г., № 5
Зав. кафедрой 1.В./

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине (модулю) **Избранные вопросы высшей математики**

Направление подготовки (специальности) 44.03.05 Педагогическое образование (с двумя профилями подготовки)

Профиль (программа подготовки, специализация) Математика и физика

> Москва 2025

Содержание

1.Перечень компетенций с указанием этапов их формирования в процессе освоения
образовательной программы
2. Описание показателей и критериев оценивания компетенций на различных этапах
их формирования, описание шкал оценивания
3. Контрольные задания или иные материалы, необходимые для оценки знаний,
умений, навыков и (или) опыта деятельности, характеризующих этапы
формирования компетенций в процессе освоения образовательной программы
4. Методические материалы, определяющие процедуры оценивания знаний, умений,
навыков и (или) опыта деятельности, характеризующих этапы формирования
компетенций

1.Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код и наименование компетенции	Этапы формирования
ПК-1 — способен осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач	

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оценива емые компете нции	Уровень сформиро- ванности	Этап формирова ния	Описание показателей	Критерии оценивания	Шкала оценивания
ПК-1	Пороговый	1. Работа на учебных занятиях. 2. Самостоятел ьная работа.	Знать основные понятия и теоремы Уметь решать изученные задачи	Домашнее задание. Устный опрос. Контрольная работа. Курсовая работа.	Шкала оценивания домашнего задания. Шкала оценивания устного опроса. Шкала оценивания контрольной работы.
	Продвинут ый	1. Работа на учебных занятиях. 2. Самостоятел ьная работа.	Знать: понятия и теоремы с доказательствами. Уметь: решать задачи, творчески используя полученные знания. Владеть: теоретическими знаниями и практическими умениями, применяя их в предметной области при решении профессиональных задач.	Домашнее задание. Устный опрос. Контрольная работа	Шкала оценивания домашнего задания. Шкала оценивания устного опроса. Шкала оценивания контрольной работы.

Шкала оценивания домашнего задания

Показатель	Баллы
Студент правильно выполнил 0 – 10% домашнего задания	0
Студент правильно выполнил 11 – 20% домашнего задания	1
Студент правильно выполнил 21 – 40% домашнего задания	2
Студент правильно выполнил 41 – 60% домашнего задания	3
Студент правильно выполнил 61 – 80% домашнего задания	4
Студент правильно выполнил 81 – 100% домашнего задания	5

Шкала оценивания устного опроса

Критерий оценивания	Баллы
Студент ответил на вопрос и показал полное и уверенное знание темы	5
Студент ответил на вопрос, однако в ответе присутствуют несущественные	4
ошибки, недостатки и недочёты	
Студент в целом ответил на вопрос, но в ответе имеются заметные и грубые	3
ошибки, недостатки и недочёты	
Студент не ответил на вопрос, но имеются более двух правильных идей или	2
подходов к правильному ответу	
Студент не ответил на вопрос, но имеются только одна-две идеи или	1
подходы к правильному ответу	
Студент не ответил на вопрос и показал полное незнание темы задания	0

Шкала оценивания контрольной работы

Показатель	Баллы
Студент правильно выполнил 0 – 2% всех заданий	0
Студент правильно выполнил 3 – 5% всех заданий	1
Студент правильно выполнил 6 – 10% всех заданий	2
Студент правильно выполнил 11 – 15% всех заданий	3
Студент правильно выполнил 16 – 20% всех заданий	4
Студент правильно выполнил 21 – 25% всех заданий	5
Студент правильно выполнил 26 – 30% всех заданий	6
Студент правильно выполнил 31 – 35% всех заданий	7
Студент правильно выполнил 36 – 40% всех заданий	8
Студент правильно выполнил 41 – 45% всех заданий	9
Студент правильно выполнил 46 – 50% всех заданий	10
Студент правильно выполнил 51 – 55% всех заданий	11
Студент правильно выполнил 56 – 60% всех заданий	12
Студент правильно выполнил 61 – 65% всех заданий	13
Студент правильно выполнил 66 – 70% всех заданий	14
Студент правильно выполнил 71 – 75% всех заданий	15
Студент правильно выполнил 76 – 80% всех заданий	16
Студент правильно выполнил 81 – 85% всех заданий	17
Студент правильно выполнил 86 – 90% всех заданий	18
Студент правильно выполнил 91 – 95% всех заданий	19
Студент правильно выполнил 96 – 100% всех заданий	20

3. Контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Текущий контроль

ПК-1 – способен осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач

Знать: понятия и теоремы с доказательствами.

Задания, необходимые для оценивания сформированности ПК-1 на пороговом уровне

Перечень вопросов для устного опроса

Семестр 9

- 1. Что такое спрямляемая кривая? Привести примеры спрямляемых кривых в пространстве.
- 2. Что такое криволинейный интеграл 1-го рода? Каково достаточное условие его существования?
- 3. Каковы основные свойства и как вычисляют криволинейные интегралы 1-го рода?
- 4. Что такое криволинейный интеграл 2-го рода?
- 5. Каковы основные свойства криволинейных интегралов 2-го рода? Как вычисляют криволинейные интегралы 2-го рода?
- 6. Что такое положительное (против часовой стрелки) и отрицательное (по часовой стрелке) направления обхода кривой на плоскости? Как выглядит формула Остроградского Грина?
- 7. Как определяют площадь поверхности в пространстве?
- 8. Что такое поверхностный интеграл 1-го рода?
- 9. Каковы основные свойства и как вычисляют поверхностные интегралы 1-го рода?
- 10. Как вычисляют площадь боковой поверхности вращения?
- 11. Что такое телесный угол и как вычисляют меру телесного угла?
- 12. Что такое поверхностный интеграл 2-го рода?
- 13. Каковы основные свойства поверхностных интегралов 2-го рода? Как вычисляют поверхностные интегралы 2-го рода?
- 14. Что такое внешняя нормаль к поверхности, являющейся границей ограниченной трёхмерной фигуры? Как выглядит формула Остроградского Гаусса?
- 15. Что означает направление обхода против часовой стрелки кривой в пространстве относительно нормали к поверхности? Как выглядит формула Стокса?
- 16. Каковы условия независимости криволинейного интеграла 2-го рода от пути интегрирования?
- 17. Что такое потенциальное векторное поле?
- 18. Что такое касательный вектор и натуральный параметр кривой?
- 19. Как определяют центр и радиус кривизны кривой?
- 20. Что такое кручение и как выглядят формулы Френе?
- 21. Что такое гауссова кривизна и средняя кривизна поверхности?

- 22. Каково предназначение второй квадратичной формы поверхности?
- 23. В геометрии каких групп аксиом вводятся понятия «отрезок», «треугольник», «направленная прямая»?
- 24. В геометрии каких групп аксиом вводятся понятия «больше», «меньше» для отрезков и углов, доказывается теорема о величине внешнего угла треугольника?
- 25. Можно ли понятие «движения» принять за основное понятие системы аксиом Гильберта? Если «да», то вместо какого понятия?
- 26. Какие понятия в аксиоматической теории называются основными?
- 27. В чем отличие предложений, выражающих аксиомы, от других предложений (теорем) аксиоматической теории?
- 28. Как связаны абсолютная геометрия, евклидова геометрия и геометрия Лобачевского?
- 29. Входит ли в абсолютную геометрию следующее предположение: «Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним»?
- 30. Входит ли в абсолютную геометрию следующее предположение: «Все вписанные в окружность углы, стороны которых проходят через две данные точки окружности, а вершины лежат по одну сторону от прямой, соединяющей эти точки, равны»?

Задания, необходимые для оценивания сформированности ПК-1 на продвинутом уровне

Перечень вопросов для устного опроса

Семестр 10.

- 1. Что такое линейное пространство? Примеры линейных пространств.
- 2. Что такое базис, размерность и координаты вектора линейного пространства?
- 3. Что такое арифметическое п-мерное линейное пространство?
- 4. Что такое матрица перехода при переходе от одного базиса к другому базису линейного пространства?
- 5. Что такое подпространство линейного пространства? Критерий подпространства.
- 6. Что такое подпространство решений однородной системы линейных уравнений?
- 7. Что такое фундаментальная система решений однородной системы линейных уравнений? Что такое линейное многообразие?
- 8. Что такое изоморфизм линейных пространств, и каковы его свойства?
- 9. Формулировки теорем об изоморфизме линейных пространств.
- 10. Что такое линейный оператор? Примеры линейных операторов.
- 11. Как задаётся линейный оператор? Что такое матрица линейного оператора в базисе?
- 12. Как связаны матрицы линейного оператора в разных базисах?
- 13. Каковы основные действия над линейными операторами?
- 14. Что такое обратимость линейного оператора?
- 15. Что такое ядро линейного оператора? Что такое образ линейного оператора?
- 16. Что такое ранг и дефект линейного оператора?
- 17. Что такое собственный вектор и собственное значение линейного оператора? Что такое спектр линейного оператора?
- 18. Что такое характеристическое уравнение линейного оператора, и в чём состоит его инвариантность?
- 19. Каков критерий существования у линейного оператора матрицы диагонального вида? Примеры линейных операторов с простым спектром.
- 20. Что такое ортогональная система векторов? Что такое ортонормированный базис?
- 21. Какова связь ортогональности с линейной зависимостью и независимостью?
- 22. В чём состоит процесс ортогонализации базиса? Что такое ортогональное дополнение к

подпространству?

- 23. Что такое симметричный линейный оператор, и каковы его свойства?
- 24. Что такое ортогональный линейный оператор, и каковы его свойства?
- 25. Как привести матрицу симметричного оператора к диагональному виду?
- 26. Как найти расстояние от точки до линейного многообразия в евклидовом пространстве?
- 27. Как найти наименьший угол между вектором и линейным подпространством?
- 28. Что такое линейное преобразование евклидова пространства?
- 29. Что такое ортогональные преобразования евклидова пространства?

Уметь: решать задачи, творчески используя полученные знания.

Задания, необходимые для оценивания сформированности ПК-1 на пороговом уровне

Перечень домашних заданий

Семестр 9

1. Вычислить криволинейные интегралы 1-го и 2-го рода:

а)
$$\int_{\Gamma} y \, dx - 3x \, dy$$
, где $\Gamma = \{x = \sin t, \ y = \cos t, \ 0 \le t \le \pi\}$, обход контура по возрастанию t ;

б)
$$\int x^2 dl$$
, где $\Gamma = \{ x = \sqrt{8} \cos t, \ y = \sqrt{8} \sin t, \ z = t, \ 0 \le t \le \pi \};$

в)
$$\int_{\Gamma}^{\Gamma} xy^3 dy$$
, где $\Gamma = \{ y = (x^2 + 1)^{1/4}, 0 \le x \le 2 \}$, обход контура по возрастанию x ;

$$\Gamma$$
) $\int_{\Gamma} e^{-x} dl$, где $\Gamma = \{ x = \ln(1+t^2), y = 2 \operatorname{arctg} t - t, 0 \le t \le 1 \}$.

2. Вычислить поверхностные интегралы 1-го и 2-го рода:

а)
$$\iint_{\sigma} dz \, dx$$
, где $\sigma = \{x + 3y + z = 5, x \ge 0, y \ge 0, z \ge 0\}$, нормаль \vec{n} к σ образует

острый угол с осью
$$OY$$
; б) $\iint_{\sigma} z \, dS$, где $\sigma = \{x + y + z = 3, x \ge 0, y \ge 0, z \ge 0\}$;

в)
$$\iint_{\sigma} z^3 dx dy$$
, где $\sigma = \{x^2 + y^2 + z^2 = 1, x \ge 0, y \ge 0, z \ge 0\}$, нормаль \vec{n} к σ образует

острый угол с осью
$$OZ$$
; гре $\sigma = \{x^2 + y^2 + z^2 = 1, y \ge x\sqrt{3} \ge 0, z \ge 0\}.$

3. Вычислить поверхностный интеграл 2-го рода через поверхность σ , являющуюся границей фигуры H, если нормаль к σ внешняя:

a)
$$\iint_{\mathbb{R}} x^3 dy dz + 2x^2 y dz dx + (2x - 1) dx dy, \quad H = \{x^2 + y^2 \le 1, 0 \le z \le 1\};$$

6)
$$\iint_{\mathcal{S}} x^2 dy dz + x dz dx + xz dx dy, \quad H = \{x^2 + y^2 \le z \le 1, x \ge 0, y \ge 0\}.$$

4. Найти потенциал U(x, y, z) векторного поля $\vec{F} = \{P(x, y, z), Q(x, y, z), R(x, y, z)\}$, если:

a)
$$P(x, y, z) = 2xyz + z^3$$
, $Q(x, y, z) = x^2z + 3y^2z^2$, $R(x, y, z) = x^2y + 2y^3z + 3xz^2$;

6)
$$P(x, y, z) = 6xy - 2x$$
, $Q(x, y, z) = 3x^2 - 2z$, $R(x, y, z) = 1 - 2y$.

- 5. Найти кривизну и кручение кривых в трехмерном пространстве:
 - a) $\vec{r} = e^t \{ \sin t, \cos t, 1 \};$ 6) $\vec{r} = a \{ \cosh t, \sinh t, t \}$ (a > 0); B) $\vec{r} = \{ \cos^3 t, \sin^3 t, \cos 2t \}.$
- 6. Вычислить гауссову и среднюю кривизны поверхности:
- 7. Докажите свойства параллельных прямых:
 - а) если прямая a параллельна прямой b в заданном направлении, то прямая b также параллельна a в том же направлении;
 - б) две прямые, параллельные третьей в одном и том же направлении, параллельны между собой в том же направлении.
- 8. Докажите, что в системе аксиом Гильберта каждое из следующих предложений эквивалентно аксиоме параллельности:
 - а) сумма внутренних углов треугольника равна двум прямым;
 - б) если различные прямые a и b не перпендикулярны, то перпендикуляр, проведённый в любой точке прямой a, пересекает прямую b;
 - в) каковы бы ни были три различные прямые, всегда существует прямая, отличная от данных прямых и пересекающая все три прямые в трех различных точках.
- 9. Используя аксиоматику Вейля, докажите:
 - а) теорему о средней линии треугольника; б) теорему косинусов; в) теорему синусов;
 - г) теорему о двух перпендикулярах; д) теорему о трёх перпендикулярах.

Задания, необходимые для оценивания сформированности ПК-1 на продвинутом уровне

Перечень домашних заданий

Семестр 10

- 1. Найти базисы суммы и пересечения линейных подпространств, натянутых на системы векторов а и b:
 - a) $\mathbf{a}_1 = (1, 2, 1), \ \mathbf{a}_2 = (1, 1, -1), \ \mathbf{a}_3 = (1, 3, 3); \ \mathbf{b}_1 = (2, 3, -1), \ \mathbf{b}_2 = (1, 2, 2), \ \mathbf{b}_3 = (1, 1, -3).$
 - 6) $\mathbf{a}_1 = (1, 2, 1, -2)$, $\mathbf{a}_2 = (2, 3, 1, 0)$, $\mathbf{a}_3 = (1, 2, 2, -3)$; $\mathbf{b}_1 = (1, 1, 1, 1)$, $\mathbf{b}_2 = (1, 0, 1, -1)$, $\mathbf{b}_3 = (1, 3, 0, -4)$.
- 2. Найти матрицу **A** линейного оператора f линейного пространства \mathbf{R}^3 в стандартном базисе, если для любого $\mathbf{x} = (x_1, x_2, x_3) \in \mathbf{R}^3$ значение $f(\mathbf{x})$ равно
 - a) $f(\mathbf{x}) = (x_2, x_3, x_1 + 2x_2)$; 6) $f(\mathbf{x}) = (5x_1 + 2x_2 x_3, 0, x_1 + x_3)$; B) $f(\mathbf{x}) = (x_2, x_3, x_1 + x_2)$.
- 3. Пусть $\mathbf{x} = (x_1, x_2, x_3) \in \mathbf{R}^3$. Является ли оператор $f(\mathbf{x})$ линейным?
 - a) $f(\mathbf{x}) = (x_1 x_2, x_2 x_3, x_3 x_1);$ 6) $f(\mathbf{x}) = (|x_1|, x_2 + x_3, x_2 x_3);$ B) $f(\mathbf{x}) = (x_2^3, x_3, x_1);$
 - $\Gamma) f(\mathbf{x}) = (5x_1 4x_2 3x_3, 1, x_2^4 + 2x_3); \qquad \text{д}) f(\mathbf{x}) = (x_1 + 3x_2 2x_3, x_1 + x_2 x_3, 5x_2 + 6x_3).$
- 4. Используя свойство сохранения ранга при изоморфном отображении, найти ранг следующих

систем векторов в соответствующих пространствах:

a)
$$\mathbf{a}_1 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$
, $\mathbf{a}_2 = \begin{pmatrix} -1 & 3 \\ 4 & 5 \end{pmatrix}$, $\mathbf{a}_3 = \begin{pmatrix} -5 & 0 \\ 2 & 3 \end{pmatrix}$, $\mathbf{a}_4 = \begin{pmatrix} 0 & 0 \\ -3 & -1 \end{pmatrix}$.

6)
$$f_1(x) = 1 + 2x + x^2 + 2x^3$$
, $f_2(x) = -1 + 3x + 4x^2 + 5x^3$, $f_3(x) = -5 + 2x^2 + 3x^3$.

5. Линейное преобразование f в некотором базисе задано матрицей **A**. Найти в этом базисе матрицу обратного линейного преобразования f^{-1} , если

a)
$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 4 \\ 0 & 1 & 5 \\ 0 & 0 & -1 \end{pmatrix}$$
; 6) $\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 4 & 0 \\ -3 & 2 & 1 \end{pmatrix}$; B) $\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 6 & 5 \\ 1 & 0 & 0 \end{pmatrix}$. \mathbf{r} $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 8 \end{pmatrix}$.

6. Найти собственные значения и собственные векторы линейных преобразований f, заданных в некотором базисе матрицами А:

a)
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
; 6) $\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$; B) $\mathbf{A} = \begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix}$; \mathbf{r}) $\mathbf{A} = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$.

7. Проверить, что векторы следующих систем попарно ортогональны, и дополнить их до ортонормированных базисов:

a)
$$\mathbf{a}_1 = (1, -2, 2, -3); \quad \mathbf{a}_2 = (2, -3, 2, 4).$$
 6) $\mathbf{a}_1 = (1, 1, 1, 2); \quad \mathbf{a}_2 = (1, 2, 3, -3).$

$$\mathbf{a}_1 = (1,1,1,2); \quad \mathbf{a}_2 = (1,2,3,-3).$$

B)
$$\mathbf{a}_1 = (2,1,2); \quad \mathbf{a}_2 = (1,2,-2).$$

r)
$$\mathbf{a}_1 = (1,1,1,1); \quad \mathbf{a}_2 = (1,1,-1,-1).$$

8. Найти расстояние от точки, заданной вектором х, до линейного многообразия, заданного системой уравнений:

a)
$$\mathbf{x} = (4, 2, -5, 1);$$

$$\begin{cases} 2x_1 - 2x_2 + x_3 + 2x_4 = 9, \\ 2x_1 - 4x_2 + 2x_3 + 3x_4 = 12. \end{cases}$$
 6) $\mathbf{x} = (2, 4, -4, 2);$
$$\begin{cases} x_1 + 2x_2 + x_3 - x_4 = 1, \\ x_1 + 3x_2 + x_3 - 3x_4 = 2. \end{cases}$$

9. Привести симметричную матрицу **A** к виду $\mathbf{A} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{-1}$, где \mathbf{D} – диагональная матрица, а \mathbf{Q} – ортогональная матрица, если

a)
$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 3 & 9 \end{pmatrix}$$
; 6) $\mathbf{A} = \begin{pmatrix} -2 & 2 & -3 \\ 2 & 2 & 2 \\ -3 & 2 & -2 \end{pmatrix}$; B) $\mathbf{A} = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & -3 \\ 3 & -3 & 3 \end{pmatrix}$; \mathbf{r}) $\mathbf{A} = \begin{pmatrix} -3 & 1 & 4 \\ 1 & 9 & 2 \\ 4 & 2 & 3 \end{pmatrix}$.

Владеть: теоретическими знаниями и практическими умениями, применяя их в предметной области при решении профессиональных задач.

Задания, необходимые для оценивания сформированности ПК-1 на продвинутом уровне

Перечень заданий для контрольных работ

Семестр 9

1. Вычислить криволинейный интеграл 1-го рода $\int y \cos x \, dl$, где $\Gamma = \{y = \sin x, \ 0 \le x \le \pi/2\}$.

- 2. Вычислить криволинейный интеграл II-го рода $\int_{\Gamma} x^{-1} dy + y dx + y^{-1} dz$, где $\Gamma = \left\{ x = t^2, \ y = t^3, \ z = t^4, \ 1 \le t \le 2 \right\}$, обход контура по возрастанию t.
- 3. Вычислить поверхностный интеграл 1-го рода $\iint_{\sigma} dS$, где $\sigma = \{x + y + z = 2, y \ge x \ge 0, z \ge 0\}$.
- 4. Вычислить поверхностный интеграл 2-го рода $\iint_{\sigma} z^2 dx dy$, где $\sigma = \left\{ z = \sqrt{x^2 + y^2}, \, x \le 0, \, y \ge 0, \, z \le 1 \right\}$, нормаль \vec{n} к σ образует острый угол с осью OZ.
- 5. Вычислить поверхностный интеграл 2-го рода $\iint_{\sigma} x^2 dy dz + y^2 dz dx + z^2 dx dy$ через поверхность σ , являющуюся границей фигуры $H = \{x + y \le 1, \, x \ge 0, \, y \ge 0, \, 0 \le z \le 1\}$. Нормаль к σ внешняя.
- 6. Найти потенциал U(x, y, z) векторного поля $\vec{F} = \{2xyz + z^3, x^2z + 3y^2z^2, x^2y + 2y^3z + 3xz^2\}.$
- 7. Найти кривизну и кручение кривой в трехмерном пространстве $\vec{r} = \{a\cos t, a\cos t, bt\}$, где a > 0 и $b \neq 0$.
- 8. Докажите неравенство треугольника, используя аксиоматику Вейля.
- 9. Докажите на основании аксиом I III аксиоматики Д. Гильберта теорему о равенстве вертикальных углов.
- 10. Используя аксиоматику Вейля, докажите, что в евклидовой геометрии не существует прямой, пересекающей все стороны треугольника.
- 11. Докажите теорему о сумме углов треугольника в аксиоматике А.Д. Александрова.

Семестр 10

- 1. Найти матрицу перехода от базиса $\mathbf{e}_1 = (1, 2, 1)$, $\mathbf{e}_1 = (2, 3, 3)$, $\mathbf{e}_1 = (3, 7, 1)$ линейного пространства к базису $\mathbf{g}_1 = (3, 1, 4)$, $\mathbf{g}_2 = (5, 2, 1)$, $\mathbf{g}_3 = (1, 1, -6)$ этого пространства.
- 2. Найти базисы суммы и пересечения линейных подпространств, натянутых на системы векторов \mathbf{a} и \mathbf{b} : $\mathbf{a}_1 = (1, 2, 1, 3)$, $\mathbf{a}_2 = (1, 1, 1, 3)$, $\mathbf{a}_3 = (1, 0, 1, 3)$, $\mathbf{a}_4 = (3, -5, 7, 2)$; $\mathbf{b}_1 = (1, 1, 1, 1)$, $\mathbf{b}_2 = (3, 3, 3, 3)$.
- 3. Найти матрицу **A** линейного оператора f линейного пространства \mathbf{R}^3 в стандартном базисе, если для любого $\mathbf{x} = (x_1, x_2, x_3) \in \mathbf{R}^3$ значение $f(\mathbf{x})$ равно

$$f(\mathbf{x}) = (2x_1 + x_2, x_2 - 2x_3, 3x_1 - 4x_2 - 5x_3).$$

4. Найти матрицу **A** линейного оператора fg линейного пространства \mathbf{R}^3 в стандартном базисе, если для любого $\mathbf{x} = (x_1, x_2, x_3) \in \mathbf{R}^3$ значения $f(\mathbf{x})$ и $g(\mathbf{x})$ равны

$$f(\mathbf{x}) = (x_1 + x_2, x_2 + x_3, x_3 + x_1), \quad g(\mathbf{x}) = (x_2, x_3, x_1 + x_2 + x_3).$$

- 5. Линейное преобразование f в некотором базисе задано матрицей $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 8 \end{pmatrix}$. Найти в этом базисе матрицу обратного линейного преобразования f^{-1} .
- 6. Найти собственные значения и собственные векторы линейного оператора f, заданного в

некотором базисе матрицей
$$\mathbf{A} = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 4 & 0 \\ -1 & 1 & 5 \end{pmatrix}$$
.

- 7. Проверить, что векторы следующих систем попарно ортогональны, и дополнить их до ортонормированных базисов: $\mathbf{a}_1 = (1,1,1,2)$, $\mathbf{a}_2 = (2,3,5,-5)$.
- 8. Найти длины сторон и углы треугольника ABC в пространстве \mathbf{R}^5 , если A=(2,4,2,4,2), B=(6,4,4,4,6), C=(5,7,5,7,2).
- 9. Найти проекцию вектора $\mathbf{x} = (4, -1, -3, 4)$ на подпространство L и ортогональную составляющую вектора \mathbf{x} , если L = $\{(1, 1, 1, 1), (1, 2, 2, -1), (1, 0, 0, 3)\}$.
- 10. Привести симметричную матрицу $\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ к виду $\mathbf{A} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{-1}$, где \mathbf{D} диагональная

матрица, а **Q** – ортогональная матрица.

Промежуточная аттестация

ПК-1. способен осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач

Знать: понятия и теоремы с доказательствами.

Уметь: решать задачи, творчески используя полученные знания.

Владеть: теоретическими знаниями и практическими умениями, применяя их в предметной области при решении профессиональных задач.

Перечень вопросов к зачету

Семестр 9

- 1. Спрямляемость и длина дуги кривой в трехмерном пространстве.
- 2. Определение, теорема о существовании и единственности и основные свойства криволинейного интеграла 1-го рода.
- 3. Определение и вычисление криволинейного интеграла 1-го рода.
- 4. Определение, теорема о существовании и единственности и основные свойства криволинейного интеграла 2-го рода.
- 5. Определение и вычисление криволинейного интеграла 2-го рода. Связь с криволинейным интегралом 1-го рода.
- 6. Криволинейный интеграл 2-го рода по границе плоской области. Направление обхода. Формула Остроградского Грина.
- 7. Площадь поверхности в пространстве.
- 8. Определение, теорема о существовании и единственности и основные свойства поверхностного интеграла 1-го рода.
- 9. Определение и вычисление поверхностного интеграла 1-го рода.
- 10. Площадь поверхности вращения. Телесный угол.
- 11. Определение, теорема о существовании и единственности и основные свойства поверхностного интеграла 2-го рода.

- 12. Определение и вычисление поверхностного интеграла 2-го рода. Связь с поверхностным интегралом 1-го рода.
- 13. Поверхностный интеграл 2-го рода по границе фигуры в трёхмерном пространстве. Формула Остроградского Гаусса.
- 14. Криволинейный интеграл 2-го рода по замкнутой кривой. Направление обхода. Формула Стокса.
- 15. Независимость криволинейного интеграла 2-го рода от пути интегрирования. Потенциальное векторное поле.
- 16. Кривая в пространстве, касательный вектор и натуральный параметр. Центр и радиус кривизны кривой. Кручение, формулы Френе.
- 17. Главные кривизны поверхности. Гауссова кривизна, средняя кривизна. Вторая квадратичная форма поверхности.
- 18. Геометрия до Евклида. «Начала» Евклида.
- 19. Критика системы Евклида. Пятый постулат Евклида.
- 20. Н.И. Лобачевский и его геометрия.
- 21. Система аксиом Гильберта. Обзор следствий из аксиом групп I-II; I-V.
- 22. Аксиома Лобачевского. Параллельные прямые по Лобачевскому.
- 23. Треугольники и четырехугольники на плоскости Лобачевского.
- 24. Взаимное расположение двух прямых на плоскости Лобачевского. Окружность, эквидистанта и орицикл.
- 25. Понятие о математической структуре. Непротиворечивость, независимость и полнота системы аксиом.
- 26. Доказательство логической непротиворечивости геометрии Лобачевского.
- 27. Система аксиом Гильберта.
- 28. Система аксиом Вейля трехмерного евклидова пространства.
- 29. Луч, угол, отрезок. Равенство отрезков и углов. Длина отрезка.
- 30. Аксиоматика А.В. Погорелова школьного курса геометрии. Об аксиомах школьного курса геометрии.
- 31. Определение и свойства линейного пространства. Арифметическое п-мерное линейное пространство.
- 32. Базис и координаты вектора в базисе. Преобразование координат. Матрица перехода.
- 33. Определение подпространства. Критерий подпространства. Подпространство решений однородной системы линейных уравнений.
- 34. Фундаментальная система решений однородной системы линейных уравнений. Линейное многообразие.
- 35. Понятие и свойства изоморфизма линейных пространств. Теоремы об изоморфизме линейных пространств.
- 36. Определение, свойства, примеры линейных операторов. Теорема о задании линейного оператора.
- 37. Матрица линейного оператора в базисе. Связь матриц в различных базисах.
- 38. Действия над линейными операторами.

Перечень вопросов к экзамену

- 1. Обратимые линейные операторы.
- 2. Ядро и образ линейного оператора, ранг и дефект.
- 3. Собственные векторы и собственные значения линейного оператора. Спектр линейного оператора.

- 4. Характеристическое уравнение линейного оператора, его инвариантность (независимость от выбора базиса).
- 5. Критерий существования у линейного оператора матрицы диагонального вида.
- 6. Линейные операторы с простым спектром.
- 7. Ортогональные системы векторов.
- 8. Ортогональные и ортонормированные базисы.
- 9. Процесс ортогонализации базиса.
- 10. Ортогональное дополнение к подпространству.
- 11. Симметричные линейные операторы.
- 12. Ортогональные линейные операторы.
- 13. Приведение матрицы симметричного линейного оператора к диагональному виду.
- 14. Расстояние от точки до линейного многообразия в евклидовом пространстве.
- 15. Наименьший угол между вектором и линейным подпространством.
- 16. Понятие линейного преобразования евклидова пространства.
- 17. Ортогональные преобразования.
- 4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Итоговая оценка знаний, умений, способов деятельности студентов по изучаемой дисциплине составляет 100 баллов.

Максимальное количество баллов, которое можно набрать за текущий контроль - 70 баллов (при сдаче экзамена) / 80 баллов (при сдаче зачета)

Максимальная сумма баллов, которые обучающийся может набрать при сдаче зачета, составляет 20 баллов, а при сдаче экзамена – 30 баллов.

Для сдачи зачета или экзамена необходимо выполнить все задания текущего контроля. Значимым моментом является показатель изучения материала лекций и выполнение заданий в указанные сроки. На зачет или экзамен выносится материал, излагаемый в лекциях и рассматриваемый на практических занятиях.

Шкала опенивания зачёта

Количество баллов	Критерии оценивания	
16 - 20	имеет место полное усвоение теоретического и практического	
	материала; студент умеет доказать все теоремы из лекционного	
	курса и решает все задачи и примеры из приведенных заданий	
12 - 15	имеет место основное усвоение теоретического и практического	
	материала; студент умеет доказать основные теоремы из	
	лекционного курса и решает основные задачи и примеры из	
	приведенных заданий	
8 – 11	имеет место знание без доказательства основных теорем и	
	формул курса; студент умеет решать задачи и примеры из	
	приведенных заданий, являющиеся обобщением задач	
	школьного курса математики	
0 - 7	имеет место неусвоение основных теорем и формул курса;	
	студент не умеет решать задачи и примеры из заданных заданий,	
	являющиеся обобщением задач школьного курса математики	

Оценка по 100-балльной системе	Оценка по традиционной системе
81 - 100	Зачтено
61 - 80	Зачтено
41 – 60	Зачтено
0 - 40	Не зачтено

Шкала оценивания экзамена

Количество баллов	Критерии оценивания	
25 - 30	имеет место полное усвоение теоретического и практического	
	материала; студент умеет доказать все теоремы из лекционного	
	курса и решает все задачи и примеры из приведенных заданий	
19 - 24	имеет место основное усвоение теоретического и практического	
	материала; студент умеет доказать основные теоремы из	
	лекционного курса и решает основные задачи и примеры из	
	приведенных заданий	
13 – 18	имеет место знание без доказательства основных теорем и	
	формул курса; студент умеет решать задачи и примеры из	
	приведенных заданий, являющиеся обобщением задач	
	школьного курса математики	
0 - 12	имеет место неусвоение основных теорем и формул курса;	
	студент не умеет решать задачи и примеры из заданных заданий,	
	являющиеся обобщением задач школьного курса математики	

Итоговая шкала оценивания результатов освоения дисциплины

Итоговая оценка по дисциплине формируется из суммы баллов по результатам текущего контроля и промежуточной аттестации и выставляется в соответствии с приведенной ниже таблицей.

Оценка по 100-балльной системе	Оценка по традиционной системе	
81 - 100	Отлично	
61 - 80	Хорошо	
41 - 60	Удовлетворительно	
0 – 40	Неудовлетворительно	