Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Дата подписания: 19.09.2025 11:27:45

Уникальный программный федерации Российской федерации

6b527943407407407722034354765586666 автономное образовательное учреждение высшего образования

«ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ»

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ) Физико-математический факультет

Кафедра профессионального и технологического образования

Согласовано

деканом физико-математического

факультета

«<u>21</u>» <u>аучелья</u> 2025 г. (Кулешова Ю.Д./

Рабочая программа дисциплины

Прототипирование и макетирование

Направление подготовки

44.03.04 Профессиональное обучение (по отраслям)

Профиль:

Педагог профессионального образования

Квалификация

Бакалавр

Форма обучения

Очная

Согласовано учебно-методической комиссией Рекомендовано кафедрой физико-математического факультета

Протокол от «16» асукая 2025 г. № Председатель УМКом / Кулешова ЮД./

профессионального и технологического

образования

Протокол от « *У »алуныца* 2025 г. № [6 3ав. кафедрой /Корецкий М.Г./

Москва 2025

Автор-составитель:

Свистунова Е.Л., доцент, кандидат технических наук, доцент кафедры профессионального и технологического образования

Рабочая программа дисциплины «Прототипирование и макетирование» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 44.03.04 Профессиональное обучение (по отраслям), утвержденного приказом МИНОБРНАУКИ РОССИИ от 22.02.2018 № 124.

Дисциплина входит в модуль «Модуль инженерной графики», в обязательную часть Блока 1 «Дисциплины (модули)» и является обязательной для изучения.

СОДЕРЖАНИЕ

 Планируемые результаты обучения
2. Место дисциплины в структуре образовательной
программы4
3. Объем и содержание
дисциплины
4. Учебно-методическое обеспечение самостоятельной работы обучающихся6
5. Фонд оценочных средств для проведения текущей и промежуточной аттестации по
дисциплине
6. Учебно-методическое и ресурсное обеспечение дисциплины
7. Методические указания по освоению дисциплины
8. Информационные технологии для осуществления образовательного
процесса по
дисциплине
9. Материально-техническое обеспечение
дисциплины

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цель и задачи дисциплины

Целью дисциплины является изучение студентами установок для аддитивного производства, способов прототипирования и особенностей оборудования и его возможного использования в образовательной деятельности школьников.

Задачи дисциплины:

- формирование у студентов знаний о технологиях 3D печати;
- развитие творческих способностей студентов;
- формирование у студентов знаний по устройству установок аддитивного производства.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

УК-2. Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений

ДПК-7. Способен разрабатывать и реализовывать образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в модуль «Модуль инженерной графики», в обязательную часть Блока 1 «Дисциплины (модули)» и является обязательной для изучения..

Для освоения дисциплины «Прототипирование и макетирование» студенты используют знания, умения и виды деятельности, сформированные в процессе изучения дисциплин «Черчение», «Компьютерная графика», «Инженерная графика», «Основы 3D-моделирования» Освоение дисциплины «Прототипирование и макетирование» является необходимой основой для изучения дисциплин Блока 1, дисциплин – «Детали машин», «Автоматизация процессов производства», «Метрология, стандартизация и сертификация»; для подготовки выпускной квалификационной работы и для дальнейшей профессиональной деятельности в системе образования.

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Показатель объема дисциплины	Форма обучения
	Очная
Объем дисциплины в зачетных единицах	4
Объем дисциплины в часах	144
Контактная работа:	112,5
Лекции	22
Практические занятия	88
из них в форме практической подготовки	88

Контактные часы на промежуточную аттестацию:	0,2
Предэкзаменационная консультация	2
Экзамен	0,3
Самостоятельная работа	18
Контроль	13,5

Форма промежуточной аттестации является экзамен и РГР в 5 семестре.

3.2. Содержание дисциплины

	Кол-во часов		
Наименование разделов (тем) Дисциплины с кратким содержанием		Практие раб	гическ боты
		Общ ее кол- во часо в	Из них в фор ме прак тиче ской подг отов ки
Тема 1. Введение в курс.	2	8	
Тема 2. Правила безопасной работы с ЧПУ оборудованием для 3D печати.	2	8	
Тема 3. Основы прототипирования. Общие термины; Преимущества и проблемы реализации аддитивных технологий; Классификация методов, систем и установок аддитивных технологий	2	8	
Тема 4. Технологии 3D печати. Фотополимерные аддитивные установки; Установки лазерного спекания порошкового материала; Установки селективного лазерного спекания; Метод лазерного	2	8	17

наплавления.			
Тема 5. Выбор технологий аддитивного производства на основе технического задания. Основания для выбора конкретных аддитивных технологий; Характеристики вещества, используемого для создания моделей; Размеры рабочей зоны для установления габаритов формируемого объекта; Выбор аддитивной установки с учетом области использования будущих моделей	2	8	17
Тема 6. Технология 3D печати методом послойного наплавления (FDM). Подача пластика в экструдер; Расплавление пластика в экструдере; Послойное нанесение расплавленного пластика; Достоинства и недостатки применяемой технологии	2	8	18
Тема 7. Эксплуатация 3D принтера FDM-типа. Применение в машиностроительном производстве; Технические характеристики; Технологические особенности печати; Выполнение печати реальных объектов и деталей машин.	2	10	18
Тема 8. Использование FDM 3D печати на уроках технологии в образовательных организациях среднего общего образования.	2	10	
Тема 9. Финишная обработка изделий FDM печати. Технические параметры, характеристики и особенности современных способов постобработки.	2	10	18
Тема 10. Содержание и структура дисциплины Практические занятия. Анализ структуры и содержания дисциплины. Разработка модуля/раздела/части образовательной программы/дисциплины/курса инженерной направленности для воспроизведения и реализации в профессиональной деятельности.	4	10	
Итого:	12	88	88

ПРАКТИЧЕСКАЯ ПОДГОТОВКА

Тема	Задание на практическую подготовку	Количество часов
Технологии 3D печати	Создайте простую 3D модель (например, ключницу) с помощью программы для 3D моделирования, сохраните её в формате STL и подготовьте к печати, используя слайсер. Затем напечатайте модель на 3D принтере, выполните постобработку и напишите краткий отчет о процессе и	17

	результатах.	
Выбор технологий аддитивного производства на основе технического задания.	Выберите одну из следующих технологий аддитивного производства: FDM (Fused Deposition Modeling), SLA (Stereolithography), SLS (Selective Laser Sintering) или DLP (Digital Light Processing). На основе предоставленного технического задания, оцените, какая из технологий наиболее подходит для производства детали	17
Технология 3D печати методом послойного наплавления (FDM).	Создайте 3D-модель простого предмета (например, брелка для ключей или подставки для телефона) с использованием программного обеспечения для 3D-моделирования. Затем подготовьте модель для печати, установив необходимые параметры, такие как толщина слоя, скорость печати и заполнение. После этого выполните печать модели на 3D-принтере методом FDM и оцените качество полученного изделия.	18
Эксплуатация 3D принтера FDM-типа.	Создайте и напечатайте 3D-модель простого объекта, например, брелка для ключей, используя 3D-принтер FDM-типа.	18
Финишная обработка изделий FDM печати.	Создайте и напечатайте 3D- модель простого объекта,	18

	для 3D-	например, ключей, принтер FD	
--	------------	------------------------------------	--

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Темы для самостоятельного изучения	Изучаемые вопросы	Коли чест во часо в	Формы самостоятел ьной работы	Методическое обеспечение	Формы отчетности
Основы прототипировани я.	Общие термины; Преимущества и проблемы реализации аддитивных технологий; Классификация методов, систем и установок аддитивных технологий	2	Работа в библиотеке и с Интернетисточниками	Учебно- методическое обеспечение дисциплины	тест, сообщение, практическ ие задания, практическ ая подготовка
Технологии 3D печати.	Фотополимерные аддитивные установки; Установки лазерного спекания порошкового материала; Установки селективного лазерного спекания; Метод лазерного наплавления.	4	Работа в библиотеке и с Интернетисточниками	Учебно- методическое обеспечение дисциплины	тест, сообщение, практическ ие задания, практическ ая подготовка
Выбор технологий аддитивного производства на основе технического задания.	Основания для выбора конкретных аддитивных технологий; Характеристики вещества, используемого для	4	Работа в библиотеке и с Интернетисточниками	Учебно- методическое обеспечение дисциплины	тест, сообщение, практическ ие задания, практическ ая подготовка

	создания моделей; Размеры рабочей зоны для установления габаритов формируемого объекта; Выбор аддитивной установки с учетом области использования будущих моделей				
Технология 3D печати методом послойного наплавления (FDM).	Подача пластика в экструдер; Расплавление пластика в экструдере; Послойное нанесение расплавленного пластика; Достоинства и недостатки применяемой технологии	4	Работа в библиотеке и с Интернетисточниками	Учебно- методическое обеспечение дисциплины	тест, сообщение, практическ ие задания, практическ ая подготовка
Эксплуатация 3D принтера FDM-типа.	Применение в машиностроитель ном производстве; Технические характеристики; Технологические особенности печати; Выполнение печати реальных объектов и деталей машин.	4	Работа в библиотеке и с Интернет- источниками	Учебно- методическое обеспечение дисциплины	тест, сообщение, практическ ие задания, практическ ая подготовка
Итого:		18			

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код и наименование компетенции	Этапы формирования компетенции	Формы учебной работы по формированию компетенций в процессе освоения образовательной программы
УК-2. Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	Когнитивный	Работа на учебных занятиях Самостоятельная работа
	Операционный	Работа на учебных занятиях Самостоятельная работа
	Деятельностный	Работа на учебных занятиях Самостоятельная работа
ДПК-7. Способен	Когнитивный	Работа на учебных занятиях Самостоятельная работа
разрабатывать и реализовывать образовательные программы, учебные предметы, курсы,	Операционный	Работа на учебных занятиях Самостоятельная работа
дисциплины (модули) инженерной направленности	Деятельностный	Работа на учебных занятиях Самостоятельная работа

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

УК-2. Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений

Этапы форми ровани	Уровн и освое			Шкала оценивани я
я компет енции	ния состав ляющ ей компе тенци и	Описание показателей	Критерии оценивания	Выражение в баллах БРС

Когнит ивный	порог овый	круга задач в рамках поставленной	Знание основ определения круга задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	41-60
	продв из действующи	оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и	Понимает и объясняет сущность определения круга задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	81 - 100
Операц ионны й	определять круг	Удовлетворительный уровень освоения умения определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	41-60	
		Высокий уровень сформированности умения определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	81 - 100	
Деятел ьностн ый	порог овый	Владение способностью определять круг задач в рамках поставленной цели и выбирать	Фрагментарное владение способностью определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	41-60

продв инуты й	оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	Владение способностью определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	81 - 100
---------------------	---	---	----------

ДПК-7. Способен разрабатывать и реализовывать образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.

Этапы	Уровн и			Шкала оценивания
ровани я компет енции	освое ния состав ляющ ей компе тенци и	Описание показателей	Критерии оценивания	Выражение в баллах БРС
Когнит ивный	порог овый	Знание основ разработки и реализации образовательных программ,	Знание основ разработки и реализации образовательных программ, учебных предметов, курсов, дисциплин (модулей) инженерной направленности.	41-60
	продв инуты й	учебных предметов, курсов, дисциплин (модулей) инженерной направленности.	Понимает и объясняет сущность разработки и реализации образовательных программ, учебных предметов, курсов, дисциплин (модулей) инженерной направленности.	81 - 100
Операц ионны й	порог овый	Умение разрабатывать и реализовывать образовательные программы,	Удовлетворительный уровень освоения умения разработки и реализации образовательных программ, учебных предметов, курсов, дисциплин (модулей) инженерной направленности	41-60

	продв инуты й	учебные предметы, курсы, дисциплины (модули) инженерной направленности.	Высокий уровень сформированности умения разработки и реализации образовательных программ, учебных предметов, курсов, дисциплин (модулей) инженерной направленности	81 - 100
Деятел ьностн ый	порог овый	Владение способностью разрабатывать и реализовывать	Фрагментарное владение способностью разрабатывать и реализовывать образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.	41-60
_	продв инуты й	образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.	Владение способностью разрабатывать и реализовывать образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.	81 - 100

Описание шкал оценивания *Шкала оценивания выполнения практических заданий*

Практические задания выполнены полностью. Задачи, поставленные в практических заданиях, решены. Показано владение материалом, владение техникой работы с ПО. Практические задания оформлены в соответствии с требованиями.	15 баллов
Большая часть практических заданий выполнена. Основные задачи, поставленные в практических заданиях, решены. Показано знание материала, умение работать с ПО. Практические задания оформлены в соответствии с требованиями. В выполненных практических заданиях присутствуют небольшие недочеты и ошибки	8 баллов
Практические задания выполнены на 50%. Часть задач, поставленных в практических заданиях, не решена. Неуверенное знание материала и умение работать с ПО. В практических работах присутствуют грубые ошибки	5 баллов
Практические задания не выполнены. Показано	0 баллов

незнание материала и умение работать с ПО.

Шкала оценивания сообщения

Критерии оценивания	Баллы
если представленное сообщение свидетельствует о проведенном самостоятельном исследовании с привлечением различных источников информации; логично, связно и полно раскрывается тема; заключение содержит логично вытекающие из содержания выводы.	15-20 баллов
если представленное сообщение свидетельствует о проведенном самостоятельном исследовании с привлечением двух-трех источников информации; логично, связно и полно раскрывается тема; заключение содержит логично вытекающие из содержания выводы.	6-14 баллов
если представленное сообщение свидетельствует о проведенном исследовании с привлечением одного источника информации; тема раскрыта не полностью; отсутствуют выводы.	2-5 баллов
если сообщение отсутствует	0 - 1 балл

Шкала оценивания практической подготовки

Критерии оценивания	Баллы
Высокая активность на практической подготовке, выполнены все задания, предусмотренные практической подготовкой	6-10 баллов
Средняя активность на практической подготовке, выполнены от 1 до 5 заданий, предусмотренных практической подготовкой	1-5 баллов
Низкая активность на практической подготовке, не выполнены задания, предусмотренные практической подготовкой	0 баллов

Шкала оценивания теста

Написание теста оценивается по шкале от 0 до 25 баллов. Освоение компетенций зависит от результата написания теста:

компетенции считаются освоенными высоком уровне (оценка отлично)	на	15-25 баллов (80-100% правильных ответов)
компетенции считаются освоенными базовом уровне (оценка хорошо);	на	9-14 баллов (70-75 % правильных ответов)

компетенции считаются освоенными на удовлетворительном уровне (оценка удовлетворительно);	1-8 баллов (50-65 % правильных ответов)
компетенции считаются не освоенными (оценка неудовлетворительно).	0 баллов (менее 50 % правильных ответов)

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Пример тестирования

Вариант 1.

- 1. 3D Builder программа для быстрого создания и редактирования трёхмерной графики. В каком формате сохраняются все файлы:
- a) *.obj +
- б) *.jpg
- в) *.bmp
- 2. Чем технология FDM отличается от FFF:
- а) в зависимости от диаметра нити (1,75 FDM, 2,85 мм FFF)
- б) одно и то же, дело в патентах +
- в) FDM это аббревиатура для персональных принтеров, а FFF промышленных машин
- 3. Резиновая детская игрушка:
- а) знаковая модель
- б) вербальная модель
- в) материальная модель +
- 4. Какой материал из перечисленных еще не доступен для 3D-печати:
- а) древесина +
- б) АБС-пластик
- в) титан
- 5. Какая из моделей не является знаковой:
- а) график
- б) рисунок
- в) музыкальная тема +
- 6. Дайте определение 3D- моделированию:
- а) Область деятельности, в которой компьютерные технологии используются для создания изображений.
- б) Процесс создания трёхмерной модели объекта. +
- в) Построении проекции в соответствии с выбранной физической моделью.
- 7. Моделирование, при котором реальному объекту противопоставляется его увеличенная или уменьшенная копия, называется:

- а) формальным
- б) математическим
- в) материальным +
- 8. Что такое Рендеринг:
- а) построение проекции в соответствии с выбранной физической моделью +
- б) доработка изображения
- в) придание движения объектам
- 9. Что является основными параметрами в 3D-моделировании:
- а) длина, глубина и высота
- б) объем фигуры
- в) глубина, высота и ширина +
- 10. Базовый вид 3D-моделирования:
- а) Поверхностное моделирование
- б) Полигональное моделирование +
- в) Твердотельное моделирование
- 11. Моделирование, основанное на мысленной аналогии, называется:
- а) идеальным +
- б) мысленным
- в) знаковым
- 12. Автоматический расчёт взаимодействия частиц, твёрдых/мягких тел с моделируемыми силами гравитации, ветра, выталкивания, а также друг с другом, называется:
- а) Анимация
- б) Динамическая симуляция +
- в) Текстурирование
- 13. Что является моделью объекта яблоко:
- а) муляж +
- б) варенье
- в) компот
- 14. Сколько основных этапов создания трёхмерного изображения:
- a) 4
- б) 5
- $^{\rm B)}6+$
- 15. Модель:
- а) упрощенное представление о реальном объекте, процессе или явлении +
- б) материальный объект
- в) визуальный объект

Вариант 2.

- 1. Кто создал 3D-моделирование:
- а) Чак Халл

- б) Айвен Сазерленд + в) Алан Тьюринг
- 2. Что из этого не является требованием к культурному ландшафту:
- а) наличие охраны территории
- б) отсутствие однообразия
- в) отсутствие благоустройства +
- 3. Программное обеспечение, позволяющее создать трёхмерную графику:
- a) Cycles
- б) Unreal Engine +
- в) Dolby 3D
- 4. Что из перечисленного не является программным обеспечением для создания 3Dмоделей:
- a) Autodesk 3Ds Max
- б) Agisoft PhotoScan
- B) Microsoft Office PowerPoint +
- 5. Когда создали 3D-моделирование:
- а) 1973 год
- б) 1963 год +
- в) 1953 год
- 6. К какому виду культурного ландшафта относятся фабрики, дороги, заводы:
- а) промышленный +
- б) городской
- в) аграрный
- 7. Первая программа для 3D-моделирования:
- a) Houdin
- δ) SketchUp +
- в) Blender
- 8. К видам культурного ландшафта не относится:
- а) лесной
- б) городской
- в) горный +
- 9. Где чаще применяется 3D-моделирование:
- а) в кинематографе
- б) в современных компьютерных играх +
- в) в печатной продукции
- 10. Какова точность воссоздания 3D-моделей артефактов:
- а) низкая
- б) средняя
- в) высокая +

- 11. 3D-моделирование используют в:
- а) Медицине
- б) Инженерии
- в) оба варианта верны +
- г) нет верного ответа
- 12. Интерес к моделированию появился благодаря крупнейшим индустриям развлечений, каким:
- а) кино, видео игры +
- б) виртуальная реальность
- в) оба варианта верны
- 13. 3D-моделирование используют в:
- а) Археологии
- б) Дизайне
- в) оба варианта верны +
- г) нет верного ответа
- 14. Первым этапом при оцифровке источника и создании 3D-модели является:
- а) моделирование +
- б) анимация
- в) текстурирование
- 15. В каком направлении используется 3D-моделирование в медицине:
- а) точечная и комплексная томография
- б) создание и конструирование протезов
- в) оба варианта верны +
- г) нет верного ответа

Примерные практические задания Задание №1

Задание: по предложенному образцу разработайте технический рисунок изделия, создайте 3D-модель изделия в системе автоматизированного проектирования (САПР), подготовьте проект для печати прототипа на 3D-принтере, распечатайте прототип на 3D-принтере, выполните чертежи изделия.

Образец: Модель динамической игрушки «Птица»

Рис.1 – Образец игрушки «Птица»

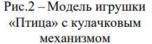


Рис.3 – Вариант детали «туловище» с осью

Динамические игрушки – интереснейшие и очень важные развивающие средства, особенно для детей. Они дают возможность играющему почувствовать собственное движение и его результат, попутно узнавая физические закономерности окружающего предметного мира. Предлагаем выполнить модель динамической игрушки по мотивам образа птицы – символа свободы и счастья в русском фольклоре. А движение её крыльев в данной модели демонстрирует принцип работы кулачкового механизма.

Габаритные размеры изделия (в собранном состоянии): не более $100 \times 60 \times 80$ мм, не менее $60 \times 40 \times 50$ мм.

Задание №2

Задание: по предложенному образцу разработайте технический рисунок изделия, создайте 3D-модель изделия в системе автоматизированного проектирования (САПР), подготовьте проект для печати прототипа на 3D-принтере, распечатайте прототип на 3D-принтере, выполните чертежи изделия.

Образец: Модель динамической игрушки «Лисица»

Рис.1 - Образец игрушки «Пёс»

Рис.2 – Модель игрушки «Лисица»

Рис.3 – Пример образа лисы

Динамические игрушки – интереснейшие и очень важные развивающие средства, особенно для детей. Они дают возможность играющему почувствовать собственное движение и его результат, попутно узнавая физические закономерности окружающего предметного мира. Предлагаем выполнить модель динамической игрушки с образом лисицы – одного из известнейших образов в играх и произведениях русского фольклора. А движение её лап демонстрирует принцип работы кривошипно-шатунного механизма.

Габаритные размеры изделия (в собранном состоянии): не более $120 \times 60 \times 20$ мм, не менее $80 \times 40 \times 9$ мм.

Примерная тематика сообщений.

- 1. Назначение, применение и особенности векторной графики в САПР
- 2. Технологии увеличения адгезионной способности материалов при работе на аддитивных ЧПУ
- 3. Оцифровка реальных объектов путём сканирования
- 4. Использование аддитивных технологий в зарубежной промышленности
- 5. Применяемые материалы в FDM 3Д печати их свойства и особенности
- 6. Использование программ САПР в зарубежной промышленности
- 7. Использование аддитивных технологий в пищевой промышленности
- 8. Построение пространственной геометрии в САПР
- 9. Использование аддитивных технологий в строительстве
- 10. Устройство машин и принципы их работы с использованием аддитивной технологии SLS
- 11. Устройство машин и принцип их работы с использованием аддитивной технологии FDM
- 12. Использование аддитивных технологий в сфере медицины
- 13. Основные конфигурации FDM 3Д принтеров, их устройство и механика

14. Устройство машин и принцип их работы с использованием аддитивной технологии SLA

Примерное задание на РГР

В качестве задания для практической части предлагается создать 3D-модель «Субмарины».

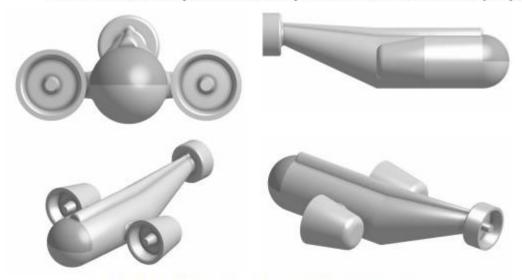


Рисунок 1 - Оригинальная модель изделия «Субмарина»

Формулировка задания

На основе представленного варианта изделия создайте 3D-модель изделия в системе автоматизированного проектирования (САПР), подготовьте проект для печати прототипа на 3D-принтере, выполните чертёж изделия.

Техническое задание

- 1. Габаритные размеры модели: не более 130x100x50 мм.
- 2. Изделие состоит из двух деталей: «Корпус», «Лобовое стекло»:
 - предусмотреть крепление детали «Лобовое стекло» на детали «Корпус» на штифты;
 - внешние поверхности деталей должны быть цельными, без отверстий и лишней геометрии;
 - на детали «Корпус» предусмотреть воздухозаборы:
 - предусмотреть все необходимые зазоры, необходимые для 3D-печати.
- 3. Используйте минимум 2 цвета для модели, отличных от базового.
- 4. Разработайте винты, разместив на трех двигателях.
- 5. Украсьте деталь «Корпус» логотипом, полученным методом гравировки.
- 6. Острые кромки необходимо скруглить.
- По окончании работ необходимо сдать: эскиз на бумаге, 3D-модели всех деталей, сборочную единицу, чертеж изделия, снимок экрана и файл проекта из программы-слайсера. Все необходимые для предоставления форматы файлов указаны в Таблице 1.

Порядок выполнения работы

- На листе чертёжной или писчей бумаги разработайте эскиз (или технический рисунок) прототипа для последующего моделирования с указанием габаритных размеров, подпишите лист своим персональным номером участника олимпиады.
- Создайте личную папку в указанном организаторами месте (на рабочем столе компьютера или сетевом диске).
- Выполните электронную 3D-модель изделия с использованием программы САПР, например, Компас 3D, Autodesk Inventor, Autodesk Fusion 360, Tinkercad, SketchUp, Blender и т. п. (если изделие в задании многодетальное, следует создать отдельные модели каждой детали и сборку – в отдельных файлах).
- Сохраните в личную папку файл проекта в формате среды разработки и в формате STEP
- Если изделие многодетальное (если требуется по заданию), в названия файлов следует добавлять название детали. В название файла сборки следует внести соответствующее указание.
- 6. Экспортируйте электронные 3D-модели изделия в формат .stl также в личную папку.
- Подготовьте модель для печати прототипа на 3D-принтере в программе-слайсере (CURA, Polygon или иной), выставив необходимые настройки печати в соответствии с параметрами печати по умолчанию или особо указанными организаторами; необходимость поддержек и контуров прилипания определите самостоятельно.
- Выполните скриншот проекта в слайсере, демонстрирующий верные настройки печати, сохраните его также в личную папку.
- 9. Сохраните файл проекта для печати в формате программы-слайсера.
- 10. В программе САПР или вручную на листе чертёжной или писчей бумаги оформите чертеж изделия, соблюдая требования ГОСТ ЕСКД, в необходимом количестве взаимосвязанных проекций, с проставлением размеров, оформлением рамки и основной надписи и т. д. (если выполняете чертёж на компьютере, сохраните его в личную папку в формате программы и в формате PDF с соответствующим именем).

Примерные задания на практическую подготовку

- 1. Создайте простую 3D модель (например, ключницу) с помощью программы для 3D моделирования, сохраните её в формате STL и подготовьте к печати, используя слайсер. Затем напечатайте модель на 3D принтере, выполните постобработку и напишите краткий отчет о процессе и результатах.
- 2. Выберите одну из следующих технологий аддитивного производства: FDM (Fused Deposition Modeling), SLA (Stereolithography), SLS (Selective Laser Sintering) или DLP (Digital Light Processing). На основе предоставленного технического задания, оцените, какая из технологий наиболее подходит для производства детали
- 3. Создайте 3D-модель простого предмета (например, брелка для ключей или подставки для телефона) с использованием программного обеспечения для 3D-моделирования. Затем подготовьте модель для печати, установив необходимые параметры, такие как толщина слоя, скорость печати и заполнение. После этого выполните печать модели на 3D-принтере методом FDM и оцените качество полученного изделия.
- 4. Создайте и напечатайте 3D-модель простого объекта, например, брелка для ключей, используя 3D-принтер FDM-типа. Создайте и напечатайте 3D-модель простого объекта, например, брелка для ключей, используя 3D-принтер FDM-типа.

Примерные вопросы к экзамену:

- 1. Особенности работы оборудования: FDM принтер.
- 2. Особенности работы оборудования: SLS принтер.
- 3. Особенности работы оборудования: SLA принтер.
- 4. Принцип работы технологии стереолитографической печати.
- 5. Техника безопасности при работе с FDM 3D принтером.
- 6. Проведение планового обслуживания FDM 3D принтера.
- 7. Процесс калибровки FDM 3D принтера.
- 8. Подготовка к работе FDM 3D принтера.
- 9. Зависимость качества печати от высоты слоя FDM 3D принтера.
- 10. Зависимость качества печати от диаметра экструдера FDM 3D принтера.
- 11. Зависимость качества печати от температуры экструдера FDM 3D принтера
- 12. Зависимость качества печати от скорости печати FDM 3D принтера.
- 13. Зависимость качества печати от обдува FDM 3D принтера.
- 14. Зависимость качества печати от загружаемого объекта FDM 3D принтера.
- 15. Особенности работы с материалом для аддитивной FDM установки: PLA.
- 16. Особенности работы с материалом для аддитивной FDM установки: ABS.
- 17. Особенности работы с материалом для аддитивной FDM установки: PETG.
- 18. Особенности работы с материалом для аддитивной FDM установки: TPU.
- 19. Химическая постобработка готовой модели.
- 20. Механическая постобработка готовой модели.
- 21. Контроль готовых изделий FDM 3D принтера.
- 22. Подготовка 3Д объекта к печати.
- 23. Выгрузка файлов в STL.
- 24. Разнесение компонентов.
- 25. Расположение объектов на столе FDM 3D принтера.
- 26. Экструдер и его устройство.
- 27. Использование ручного измерительного инструмента для контроля качества изделия.
- 28. Применение систем бесконтактной оцифровки для контроля качества изделия.
- 29. Придельные отклонения по стандартам технической документации.
- 30. Точность измерения, погрешность.
- 31. Проверка модели в ПО на наличие дефектов.
- 32. Применение FDM 3D принтера в промышленном производстве.
- 33. Применение FDM 3D принтера в быту.
- 34. Применение FDM 3D принтера в малом производстве.
- 35. Применение FDM 3D принтера для производства деталей машин.
- 36. Применение FDM 3D принтера для производства художественных объектов.
- 37. Выполнение работ по доводке изделий.
- 38. Технические параметры и характеристики современных аддитивных установок.
- 39. Примеры использования современных аддитивных установок.
- 40. Использование координатно-расчетных станков для целей финишной обработки.

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Требования к тестированию

Предлагаемые тестовые задания предназначены для повторения пройденного материала и закрепления знаний, главная цель тестов - систематизировать знания студентов. Во всех тестовых заданиях необходимо выбрать правильный из предлагаемых ответов, завершить

определение либо вставить недостающий термин. Текущий контроль знаний в виде тестирования, проводится в рамках практического занятия.

Написание теста оценивается по шкале от 0 до 25 баллов. Освоение компетенций зависит от результата написания теста.

Практические задания

Студентам предлагается продемонстрировать знания, полученные в процессе освоения дисциплины. На основе полученных теоретических знаний каждый студент обязан выполнить практические задания по изучаемой теме.

Требования к сообщению

Сообщение – продукт самостоятельной работы студента, представляющий собой публичное выступление по представлению полученных результатов решения определенной учебнопрактической, учебно-исследовательской или научной темы.

Требования по оформлению сообщения

Последовательность подготовки сообщения:

- 1. Подберите и изучите литературу по теме.
- 2. Составьте план сообщения.
- 3. Выделите основные понятия.
- 4. Введите в текст дополнительные данные, характеризующие объект изучения.
- 5. Оформите текст письменно.
- 6. Подготовьте устное выступление с сообщением на учебном занятии Само выступление должно состоять из трех частей вступления (10-15% общего времени), основной части (60-70%) и заключения (20-25%).

Требования к оформлению текста

Общий объем не должен превышать 5 страниц формата А 4, абзац должен равняться 1,25 см.

Поля страницы: левое - 3 см., правое - 1,0 см., нижнее 2 см., верхнее - 2 см. Текст печатается через 1,5 интервала. Если текст набирается в текстовом редакторе Microsoft Word, рекомендуется использовать шрифты: Times New Roman, размер шрифта - 14 пт.

После заголовка, располагаемого посредине строки, не ставится точка. Не допускается подчеркивание заголовка и переносы в словах заголовка.

Страницы нумеруются в нарастающем порядке. Номера страниц ставятся внизу листа по центру, размер шрифта - 12 пт

Титульный лист включается в общую нумерацию, но номер страницы на нем не проставляется (это не относится к содержанию сообщения).

Требования к расчетно-графической работе:

Работа выполняется по индивидуальной форме организации, каждый студент имеет индивидуальное задание, соответствующее его варианту.

Перед выполнением расчетно-графических работ следует изучить теоретический материал. Расчетно-графические работы оформляются в соответствии со следующей структурой:

- наименование, номер работы;
- тема;
- цель;
- условия задания;
- расчетная часть с пояснением решения;
- вывод по работе.

При выполнении работы необходимо соблюдать единство терминологии, обозначений, единиц измерения в соответствии с действующими СНиПами и ГОСТами.

При оценке ответа студента на расчетно-графической преподаватель руководствуется следующими критериями:

Оценка	Критерии оценки
Отлично	РГР выполнена полностью, без ошибок (возможна одна неточность,
(81-100 баллов)	описка, не являющаяся следствием непонимания материала). Содержание работы полностью соответствует заданию. Структура работы логически и методически выдержана. Оформление работы отвечает предъявляемым требованиям. При защите работы обучающийся правильно и уверенно отвечает на вопросы преподавателя, демонстрирует глубокое знание теоретического материала, способен аргументировать собственные утверждения и выводы.
Хорошо	РГР выполнена полностью, но обоснования шагов решения
(61-80 баллов)	недостаточны, допущена одна негрубая ошибка или два-три недочета, не влияющих на правильную последовательность рассуждений. Содержание работы полностью соответствует заданию. Структура работы логически и методически выдержана. Оформление работы в целом отвечает предъявляемым требованиям. При защите работы обучающийся правильно и уверенно отвечает на большинство вопросов преподавателя, демонстрирует хорошее знание теоретического материала, но не всегда способен аргументировать собственные утверждения и выводы. При наводящих вопросах преподавателя исправляет ошибки в ответе.
Удовлетворительно (41-60 баллов)	В РГР допущено более одной грубой ошибки или более двух-трех недочета, но обучающийся владеет обязательными умениями по проверяемой теме. Содержание работы частично не соответствует заданию. Оформление работы в целом отвечает предъявляемым требованиям. При защите работы обучающийся допускает ошибки при ответах на вопросы преподавателя, демонстрирует слабое знание теоретического материала, в большинстве случаев не

	способен уверенно аргументировать собственные утверждения и
	выводы.
Неудовлетворительн	В РГР допущено большое количество существенных ошибок по
0	сути работы. Содержание работы не соответствует заданию.
(21.40.5	Оформление работы не отвечает предъявляемым требованиям. ИЛИ
(21-40 баллов)	Расчетно-графическая работа не представлена преподавателю. При
	защите РГР обучающийся демонстрирует слабое понимание
	программного материала.

Требования к экзамену

Промежуточная аттестация по дисциплине определяет степень усвоения знаний, умений и навыков студентов по учебному материалу семестра, проводится в виде экзамена.

Экзамен проводится в устной форме, где студентам необходимо ответить на теоретические вопросы.

Шкала оценивания экзамена

- 30-25 баллов плановые практические задания выполнены в полном объеме; приведен полный, исчерпывающе правильный ответ и даны исчерпывающие верные рассуждения; устный ответ на вопросы констатирует прочное усвоение знаний и умений.
- 24-18 баллов плановые практические задания выполнены в полном объеме; поставленные задачи решены правильно, однако рассуждения, приводящие к ответу, представлены не в полном объеме, или в них содержатся логические недочеты; устный ответ на вопросы содержит неточности, незначительные погрешности в изложении теории.
- 17-9 баллов плановые практические задания выполнены, даны правильные ответы, но в некоторых из них допущены ошибки; устный ответ на вопросы показывает отдельные пробелы в знаниях студента.
- 8-5 балла плановые практические задания выполнены не в полном объеме; устный ответ на вопросы содержит грубые ошибки в изложении теории, которые показывают значительные пробелы в знаниях студента; более половины вопросов оказались без ответов; знания и умения не соответствуют требованиям программы.
- 4-0 баллов не выполнены плановые практические задания, студент объявляет о непонимании материала дисциплины, о полном незнании ответа на поставленные теоретические вопросы

Итоговые шкалы оценивания по дисциплине

При выставлении итоговой оценки преподавателем учитывается работа студента в течение всего срока освоения дисциплины, а также баллы, полученные на промежуточной аттестации

Цифровое выражение	Выражение в баллах БРС	Словесное выражение	Описание оценки в требованиях к уровню и объему компетенций
5	81-100	Отлично (зачтено)	Освоен продвинутый уровень всех составляющих компетенций УК-2, ДПК-7
4	61-80	Хорошо (зачтено)	Освоен повышенный уровень всех составляющих компетенций УК-2, ДПК-7
3	41-60	Удовлетворительно (зачтено)	Освоен базовый уровень всех составляющих компетенций УК-2, ДПК-7
2	0-40	Неудовлетворительно (не зачтено)	Не освоен базовый уровень всех составляющих компетенций УК-2, ДПК-7

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная литература

- 1. Инженерная 3D-компьютерная графика в 2 т. Том 1 : учебник и практикум для среднего профессионального образования / А. Л. Хейфец, А. Н. Логиновский, И. В. Буторина, В. Н. Васильева ; под редакцией А. Л. Хейфеца. 3-е изд., перераб. и доп. Москва : Издательство Юрайт, 2023. 328 с. (Профессиональное образование). ISBN 978-5-534-07976-0. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/516876
- 2. Аддитивные технологии в производстве: учебное пособие для вузов / А. Л. Галиновский, Е. С. Голубев, Н. В. Коберник, А. С. Филимонов; под общей редакцией А. Л. Галиновского. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2023. 145 с. (Высшее образование). ISBN 978-5-534-16005-5. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/523614
- 3. *Блинов*, *В. И.* Педагогика 2. 0. Организация учебной деятельности: учебное пособие для вузов / В. И. Блинов, Е. Ю. Есенина, И. С. Сергеев. Москва: Издательство Юрайт, 2023. 222 с. (Высшее образование). ISBN 978-5-534-14773-5. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/520289

6.2. Дополнительная литература

- 1. Бондаренко А.М. Макетирование в дизайне интерьера : учебное пособие / Бондаренко А.М.. Санкт-Петербург : Санкт-Петербургский государственный университет промышленных технологий и дизайна, 2023. 61 с. ISBN 978-5-7937-2394-7. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/140138.html
- 2. Моделирование и прототипирование : учебное пособие для школьников / В. В. Климов, Г. К. Барышев, Ю. О. Жуковский [и др.]. Москва : Национальный

исследовательский ядерный университет «МИФИ», 2023. — 164 с. — ISBN 978-5-7262-3009-2. — Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/141183.html

6.3 Ресурсы информационно-телекоммуникационной сети «Интернет»

- 1. http://mon.gov.ru Министерство образования и науки РФ;
- 2. http://www.fasi.gov.ru Федеральное агентство по науке и образованию;
- 3. http://www.edu.ru Федеральный портал «Российское образование»;
- 4. http://www.garant.ru информационно-правовой портал «Гарант»
- 5. http://www.school.edu.ru Российский общеобразовательный портал;
- 6. http://www.openet.edu.ru Российский портал открытого образования;
- 7. http://www.ict.edu.ru портал по информационно-коммуникационным технологиям в образовании;
- 8. http://pedagogic.ru педагогическая библиотека;
- 9. http://www.pedpro.ru журнал «Педагогика»;
- 10. http://www.informika.ru/about/informatization_pub/about/276 научно-методический журнал «Информатизация образования и науки»;
- 11. http://www.hetoday.org журнал «Высшее образование сегодня».
- 12. http://www.znanie.org/ Общество «Знание» России
- 13. http://www.gpntb.ru Государственная публичная научно-техническая библиотека.
- 14. http://www.rsl.ru Российская национальная библиотека.
- 15. http://www.gpntb.ru Публичная электронная библиотека.
- 16. http://www.znanium.com/ Электронно-библиотечная система
- 17. http://www.biblioclub.ru/ Университетская библиотека онлайн
- 18. http://www.elibrary.ru Научная электронная библиотека

7.МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

1. Методические рекомендации по организации и выполнению самостоятельной работы студентов

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Зарубежное: Microsoft Windows, Microsoft Office Отечественное: Kaspersky Endpoint Security

Свободно распространяемое программное обеспечение:

Зарубежное: Google Chrome, 7-zip

Отечественное: ОМС Плеер (для воспроизведения Электронных Учебных Модулей)

Информационные справочные системы:

Система ГАРАНТ

Система «КонсультантПлюс»

Профессиональные базы данных:

<u>fgosvo.ru – Портал Федеральных государственных образовательных стандартов высшего</u> образования

pravo.gov.ru - Официальный интернет-портал правовой информации

www.edu.ru – Федеральный портал Российское образование

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения занятий лекционного и лабораторного типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные учебной мебелью, доской, лабораторным оборудованием.
- лаборатория информационных технологий, оснащенная лабораторным оборудованием: комплект учебной мебели, персональные компьютеры с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду ГУП, установленным программным обеспечением КОМПАС-3D;
- помещения для самостоятельной работы, укомплектованные учебной мебелью, персональными компьютерами с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду UEG;
- помещения для хранения и профилактического обслуживания учебного оборудования, укомплектованные мебелью (шкафы/стеллажи), наборами демонстрационного оборудования и учебно-наглядными пособиями.