Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Уникальнфедеральное учреждение высшего образоватия

6b5279da4e034bff679172803da54706999PCТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ»

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ)

Физико-математический факультет

Кафедра профессионального и технологического образования

Согласовано

деканом физико-математического

факультета

«21» анделя 2025 г.

(Кулешова Ю.Д./

Рабочая программа дисциплины

Энергетические машины

Направление подготовки

44.03.04 Профессиональное обучение (по отраслям)

Профиль:

Педагог профессионального образования

Квалификация

Бакалавр

Форма обучения

Очная

Согласовано учебно-методической комиссией Рекомендовано кафедрой

физико-математического факультета

Протокол от «16» апреля 2025 г. № %/ Председатель УМКом / Кулешова Ю.Д./

профессионального и технологического

образования

Протокол от « $\frac{g}{}$ » апресе \$2025 г. № $\frac{1}{6}$ Зав. кафедрой ______/Корецкий М.Г./

Москва 2025

Автор-составитель:

Лавров Н.Н., доктор педагогических наук, профессор, профессор кафедры профессионального и технологического образования ГУП

Рабочая программа дисциплины «Энергетические машины» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки), утвержденного приказом МИНОБРНАУКИ РОССИИ от 22.02.2018 № 124.

«Энергетические машины» входит в модуль машиностроения Блока 1 «Дисциплины (модули)» и является обязательной для изучения

Год начала подготовки(по учебному плану) 2025

СОДЕРЖАНИЕ

1. План	ируемые результаты обучения
4	
2. Me	есто дисциплины в структуре образовательной
программ	ъ4
3. Of	бъем и содержание
дисципли	ны4
4. Уч	ебно-методическое обеспечение самостоятельной работы
обучающі	ихся6
5. Φo	онд оценочных средств для проведения текущей и промежуточной
аттестаци	и по
дисципли	не7
6. Уч	ебно-методическое и ресурсное обеспечение
дисципли	ны21
7. Me	етодические указания по освоению
дисципли	ны23
8. Ин	формационные технологии для осуществления образовательного
процесса	по
дисципли	те
3	
9. Ma	атериально-техническое обеспечение
дисципли	ны24

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цель и задачи дисциплины

Целью дисциплины является формирование у студентов представлений об устройстве и принципах работы энергетических машинах как базовой компоненты технологического культуры и методологической основы освоения общетехнических дисциплин и робототехнических устройств.

Задачи дисциплины:

- освоение знаний о фундаментальных принципах функционирования и применения энергетических машин в современном производстве и быту в целях формирования профессиональной готовности к решению задач технологического образования (проектное обучение) и образовательной робототехники;
- формирование у студентов умения решать технические практико-ориентированные задачи в целях развития способности осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач;
- формирование у студентов способности осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач.
- формирование у студентов способности организовывать содержательную практическую деятельность обучающихся с наукоемкой составляющей, способствующей успешному личностному росту обучающихся.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

ДПК-7. Способен разрабатывать и реализовывать образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

«Энергетические машины» входит в модуль машиностроения Блока 1 «Дисциплины (модули)» и является обязательной для изучения.

Для освоения дисциплины «Энергетические машины» студенты используют знания, умения и виды деятельности, сформированные в процессе изучения дисциплин «Черчение», «Практикум по обработке конструкционных материалов», «Технология конструкционных материалов».

Освоение дисциплины «Энергетические машины» является необходимой основой для последующего изучения таких дисциплин, как: «Детали машин», «Автоматизация процессов производства», «Метрология, стандартизация и сертификация», «Теория машин и механизмов», для подготовки выпускной квалификационной работы и для дальнейшей профессиональной деятельности в системе образования.

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 3.1. Объем дисциплины

Показатель объема дисциплины	Форма обучения
	Очная
Объем дисциплины в зачетных единицах	3
Объем дисциплины в часах	108
Контактная работа:	90,3
Лекции	24
Практические занятия	64
Консультации	2
Экзамен	0.3
Самостоятельная работа	8
Контроль	9,7

Форма промежуточной аттестации - экзамен в 6 семестре.

3.2. Содержание дисциплины

Наименование разделов (тем) Дисциплины с кратким содержанием	Кол-во Лекц ии	часов Прак тичес кие работ ы
Тема 1. Введение. Теоретические основы энергетических машин. Общие сведения об энергетических машинах. Место и значение энергетики в развитии материально-технической базы общества. Роль курса в профессиональной подготовке преподавателя технологического образования. Основные термодинамические параметры. Идеальный газ и уравнение его состояния. Теплоемкость. Внутренняя энергия. Механическая работа газа. Энтальпия. Энтропия. Первый закон термодинамики. Термодинамические диаграммы. Термодинамические процессы идеального газа. Изображение процессов в термодинамических диаграммах. Рабочее тело тепловых машин. Основные свойства и характеристики воды и водяного пара. Термодинамические диаграммы воды и водяного пара. Термодинамический цикл. Условия получения полезной работы в цикле. Цикл Карно. Второй закон термодинамики. Проблемы повышения экономичности энергетических машин и пути их решения.	2	6

Практическое занятие 1. Расчет термодинамических параметров идеального газа как рабочего тела тепловых машин.		
Тема 2.	2	6
Основы теплопередачи. Способы распространения тепла и виды	_	
теплообмена.		
Теплопроводность. Коэффициент теплопроводности. Термическое сопротивление.		
Конвективный теплообмен. Коэффициент теплоотдачи, его зависимость от		
режима движения теплоносителя.		
Лучистый теплообмен. Коэффициенты поглощения, отражения,		
пропускания.		
Теплопередача, уравнение теплопередачи, коэффициент теплопередачи. Теплообменные аппараты. Уравнение теплового баланса теплообменного		
аппарата.		
Топливные ресурсы и их характеристики. Котельные агрегаты и установки. Устройство и принцип работы.		
Практическое занятие 2. Теплопроводность в плоской стенке.		
Теплоизоляционные материалы.		
Практическое занятие 3. Теплопередача через многослойную стенку.		
Тема 3. Устройство и принципы работы ДВС.	2	6
Двигатели внутреннего сгорания. Принципиальные схемы. Области применения. Индикаторные диаграммы различных ДВС, их сравнение. Индикаторная, эффективная и литровая мощность. Идеальные циклы,		
термические КПД циклов. Тепловой баланс и КПД различных ДВС.		
Перспективы двигателестроения.		
Практическое занятие 4. Определение параметров идеальных циклов ДВС. Определение их термических КПД. Перспективы развития ДВС.		
Тема 4. Циклы паросиловых установок.	2	6
Паротурбинные установки, их устройство и принцип действия.		
Идеальный цикл паросиловой установки, термический КПД и пути его		
повышения. Теплофикация. Перспективы паротурбостроения.		
Практическое занятие 5. Определение термического КПД паросиловой		
установки.		
Тема 5. Газотурбинные двигатели.	2	8
Принципиальная схема, характеристика, принцип работы газотурбинных		
двигателей. Идеальные циклы газотурбинных двигателей, термический		
КПД и пути его повышения. Области применения различных ГТД.		
Перспективы газотурбостроения.		
Тема 6. Реактивные двигатели.	2	8
Классификация реактивных двигателей. Воздушно-реактивные, жидкостно-		
реактивные двигатели, их устройство, принцип действия, области		
применения и перспективы развития.		
Тема. 7. Компрессоры и холодильные машины.	4	8
Принцип работы и области применения компрессоров.		
Паровая компрессионная холодильная установка, схема, принцип действия		
и идеальный цикл. Абсорбционные холодильные установки. Принцип		
работы и применение тепловых насосов.		Ω
Тема 8. Классификация и области применения гидравлических	4	8

машин. Насосы. Классификация по принципу действия. Основные параметры, области применения. Гидродвигатели. Классификация по принципу действия. Типы и основы работы гидравлических турбин. Гидропривод Основные понятия и определения. Классификация, назначение. Основы принципа работы, достоинства и недостатки гидропривода. Использование гидропривода в различных областях техники. Практическое занятие 6. Определение характеристик насосной установки.		
Тема 9. Основы теплоэлектроэнергетики. Возобновляемые и невозобновляемые энергоресурсы. Тепловые электрические станции (ТЭС): конденсационные электростанции и теплоэлектроцентрали (ТЭЦ). Основные схемы и принцип работы. Пути повышения и КПД ТЭС. Атомные электростанции (АЭС). Основные схемы и характеристики АЭС. Гидроэлектростанции, (ГЭС): плотинные, деривационные, гидроаккумулирующие, приливные. Роль ГЭС в единой энергосистеме. Перспективы развития энергетики. Экологические проблемы современной энергетики. Практическое занятие 7. Перспективы развития теплоэнергетики в РФ и мире.	4	8
Итого:	12	64

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Темы для самостоятельного изучения	Изучаемые вопросы	Коли чест во часо в	Формы самостоятель ной работы	Методическое обеспечение	Формы отчетности
Тепловые насосы	История изобретения, применение в технике и в быту, перспективы использования	2	Работа в библиотеке и с Интернет источникам и	Учебно- методическое обеспечение дисциплины	Доклад, сообщение, тест
Пневмопривод	История изобретения, применение в технике, применение в робототехнике	2	Работа в библиотеке и с Интернет источникам и	Учебно- методическое обеспечение дисциплины	Доклад, сообщение, тест
Альтернативная энергетика	Виды альтернативных источников энергии, перспективы развития	4	Работа в библиотеке и с Интернет источникам и	Учебно- методическое обеспечение дисциплины	Доклад, сообщение, тест
Итого:	1 -	8			

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

В результате освоения дисциплины студент должен обладать следующими компетенциями для профиля технологическое образование (проектное обучение) и образовательная робототехника:

Код и наименование	Этапы	Формы учебной работы по
компетенции	формирования компетенции	формированию компетенций в процессе освоения образовательной
ДПК-7. Способен	Когнитивный	программы Работа на учебных занятиях Самостоятельная работа
разрабатывать и реализовывать образовательные программы, учебные предметы, курсы,	Операционный	Работа на учебных занятиях Самостоятельная работа
дисциплины (модули) инженерной направленности.	Деятельностный	Работа на учебных занятиях Самостоятельная работа
УК-1. Способен осуществлять поиск,	Когнитивный	Работа на учебных занятиях Самостоятельная работа
критический анализ и синтез информации, применять	Операционный	Работа на учебных занятиях Самостоятельная работа
системный подход для решения поставленных задач	Деятельностный	Работа на учебных занятиях Самостоятельная работа

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

ДПК-7. Способен разрабатывать и реализовывать образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.

Этапы	Уровн			Шкала
форми	И			оценивани
ровани	освое			R
R	ния			
компет	состав	Описание	V питарии ономирания	
енции	ляющ	показателей	Критерии оценивания	Выражение
	ей			в баллах
	компе			БРС
	тенци			
	И			

Когнит ивный	порог овый	Знание основ разработки и реализации образовательных программ,	Знание основ разработки и реализации образовательных программ, учебных предметов, курсов, дисциплин (модулей) инженерной направленности.	41-60
	продв инуты й	учебных предметов, курсов, дисциплин (модулей) инженерной направленности.	Понимает и объясняет сущность разработки и реализации образовательных программ, учебных предметов, курсов, дисциплин (модулей) инженерной направленности.	81 - 100
Опера ционн ый	порог овый	Умение разрабатывать и реализовывать образовательные программы,	Удовлетворительный уровень освоения умения разработки и реализации образовательных программ, учебных предметов, курсов, дисциплин (модулей) инженерной направленности	41-60
	продв инуты й	учебные предметы, курсы, дисциплины (модули) инженерной направленности.	Высокий уровень сформированности умения разработки и реализации образовательных программ, учебных предметов, курсов, дисциплин (модулей) инженерной направленности	81 - 100
Деятел ьностн ый	порог овый	Владение способностью разрабатывать и реализовывать	Фрагментарное владение способностью разрабатывать и реализовывать образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.	41-60
	продв инуты й	образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.	Владение способностью разрабатывать и реализовывать образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.	81 - 100

УК-1 - Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

Этапы	Уровн			Шкала
форми	И			оценивани
ровани	освое			R
Я	кин			
компет	состав	Описание	Критерии оценивания	
енции	ляющ	показателей	Критерии оценивания	Выражение
	ей			в баллах
	компе			БРС
	тенци			
	И			

Когнит ивный	порог овый	Знание основ осуществления поиска, критического	Знание основ осуществления поиска, критического анализа и синтеза информации, применения системного подход для решения поставленных задач.	41-60
	продв инуты й	анализа и синтеза информации, применять системный подход для решения поставленных задач	Понимает и объясняет сущность осуществления поиска, критического анализа и синтеза информации, применять системный подход для решения поставленных задач	81 - 100
Опера ционн ый	порог овый	Умение осуществлять поиск, критический анализ и синтез информации,	Удовлетворительный уровень освоения умения осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач.	41-60
	продв инуты й	применять системный подход для решения поставленных задач	Высокий уровень сформированности умения осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	81 - 100
Деятел ьностн ый	порог овый	Владение способностью осуществлять поиск,	Фрагментарное владение способностью осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	41-60
	продв инуты й	критический анализ и синтез информации, применять системный подход для решения поставленных задач	Владение способностью осуществлять и оптимизировать поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	81 - 100

Описание шкал оценивания

Шкала оценивания сообщения

Критерии оценивания	Баллы
---------------------	-------

если представленное сообщение свидетельствует о проведенном самостоятельном исследовании с привлечением различных источников информации; логично, связно и полно раскрывается тема; заключение содержит логично вытекающие из содержания выводы.	15-20 баллов
если представленное сообщение свидетельствует о проведенном самостоятельном исследовании с привлечением двух-трех источников информации; логично, связно и полно раскрывается тема; заключение содержит логично вытекающие из содержания выводы.	6-14 баллов
если представленное сообщение свидетельствует о проведенном исследовании с привлечением одного источника информации; тема раскрыта не полностью; отсутствуют выводы.	2-5 баллов
если сообщение отсутствует	0 - 1балл

Шкала оценивания теста

Написание теста оценивается по шкале от 0 до 25 баллов. Освоение компетенций зависит от результата написания теста:

posjustana namnoamist roota.	
компетенции считаются освоенными на	15-25 баллов (80-100% правильных ответов)
высоком уровне (оценка отлично)	
компетенции считаются освоенными на	9-14 баллов (70-75 % правильных ответов)
базовом уровне (оценка хорошо);	
компетенции считаются освоенными на	1-8 баллов (50-65 % правильных ответов)
удовлетворительном уровне (оценка	
удовлетворительно);	
компетенции считаются не освоенными	0 баллов (менее 50 % правильных ответов)
(оценка неудовлетворительно).	

Шкала оценивания доклада

Критерии оценивания	Баллы	
Свободное изложение и владение материалом. Полное усвоение сути проблемы,		
достаточно правильное изложение теории и методологии, анализ фактического	20 -25 баллов	
материала и четкое изложение итоговых результатов, грамотное изложение	20 23 0033103	
текста.		
Достаточное усвоение материала. Суть проблемы раскрыта, аналитические		
материалы, в основном, представлены; описание не содержит грубых ошибок;	14-19 баллов	
основные выводы изложены и, в основном, осмыслены.		
Поверхностное усвоение теоретического материала. Недостаточный анализ		
анализируемого материала. Суть проблемы изложена нечетко; в использовании	7-13 баллов	
понятийного аппарата встречаются несущественные ошибки;		
Неудовлетворительное усвоение теоретического и фактического материала по		
проблемам научного исследования. Суть проблемы и выводы изложены плохо; в	0-6 баллов	
использовании понятийного аппарата встречаются грубые ошибки; основные	0-0 oannos	
выводы изложены и осмыслены плохо.		

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Пример тестирования Тест №1

Произвести расчет параметров рабочего тела в заданном термодинамическом процессе. Определить требуемые величины подведенной (отведенной) теплоты, изменения внутренней энергии, совершенной или затраченной механической работы. В качестве рабочего тела принять воздух. Результаты изобразить в PV-диаграмме.

Ответить на теоретические вопросы:

- 1. Размерность (наименование) величины р (плотность) имеет вид
- a) $\kappa \Gamma/M^2$; 6) $\kappa \Gamma/M^3$; B) $M^3/\kappa \Gamma$; Γ) $M^3 \times \kappa \Gamma$.
- 2. Избыточное давление газа измеряется ...
- а) манометром б) микрометром в) расходомером г) пирометром
- 3. Уравнение состояния идеального газа имеет вид (для 1 кг газа)
- 4. Абсолютная температура газа измеряется в ...
- а) Ваттах б) градусах Цельсия в) градусах Фаренгейта г) Кельвинах
- 5. 1 моль является единицей СИ для измерения ...
- а) массы б) количества вещества в) объема г) веса
- 6. Уравнение адиабатического процесса имеет вид

a)
$$p_1 \times v_1^k = p_2 \times v_2^k$$
 6) $p_1 \times v_1 = p_2 \times v_2$ B) $p_1 / T_1 = p_2 / T_2$ Γ $v_1 / T_1 = v_2 / T_2$

- 7. Изображение изохорного процесса в ру-координатах имеет вид
- а) отрезка гиперболы;
- б) отрезка параболы;
- в) отрезка, параллельного оси Р;
- г) отрезка, параллельного оси V.
- 8. Площадь под кривой процесса в PV-координатах отображает ...
- а) изменение объема газа в процессе
- б) изменение температуры в процессе
- в) механическую работу газа в процессе
- г) изменение давления газа в процессе

- 9. Без теплообмена с окружающей средой осуществляется ... идеальный газовый процесс: а) изобарный б) изотермический в) изохорный г) адиабатный 10. Вся подведенная к газу теплота в ... процессе расходуется на изменение его внутренней энергии: а) изохорном б) изобарном в) адиабатном г) изотермическом 11. L = p(V2 - V1) - формула для определения механической работы, совершенной газом в ...процессе а) изохорном б) изотермическом в) адиабатном г) изобарном 12. В TS – диаграмме площадь под кривой процесса отображает ... а) изменение температуры б) изменение энтропии в) подведенную или отведенную теплоту в) изменение давления 13. В каком из перечисленных газовых процессов рабочее тело совершает максимальную работу в процессе расширения газа? а) изохорном б) адиабатном в) изобарном г) изотермическом 14. Аналитическое выражение первого закона термодинамики имеет вид a) dq = du + pdv; 6) i = u + pv; B) dq = TdS; r) $dq = \alpha(T1 - T2)$
- 15. В каком из перечисленных газовых процессов рабочее тело не совершает механической работы?
- а) адиабатном

- б) изотермическом
- в) изохорном
- г) изобарном

Правильные ответы к тесту

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
б	a	a	Γ	б	a	В	В	Γ	a	Γ	В	Γ	a	В

Представить выполненный тест в письменной форме.

Тест №2

Произвести расчет удельного теплового потока через стенку известной толщины, теплоизолированную утеплителем заданной толщины. Материал стенки и утеплителя, температуры внешней и внутренней поверхностей известны. Необходимые коэффициенты теплопроводности взять из интернет-источников. Рассчитать температуру на границе стенка-утеплитель. Результаты изобразить на графике.

Ответить на теоретические вопросы:

- 1. Тепловой поток это количество теплоты, ...
- а) проходящее через заданную поверхность площадью S в единицу времени
- б) проходящее через заданную поверхность площадью S
- в) затраченное в процессе нагрева поверхности стенки
- г) затраченное в процессе охлаждения поверхности стенки
- 2. Единица измерения удельного теплового потока
- а) Дж б) $H*_{M}$ в) $B_{T/M}^{2}$ г) $H/_{M}^{2}$
- 3. Коэффициент теплопроводности в системе СИ измеряется в ...
- a) $BT/(M^2 \times K)$ 6) H^*M B) BT/M^2 Γ) $BT/(M \times K)$.
- 4. Величина теплового потока через плоскую однослойную стенку толщиной d и площадью S, c температурами на поверхностях стенки T_1 и T_2 , определяется по формуле закона Фурье
- 5. Распределите данные материалы по степени возрастания теплопроводности
- а) сталь б) серебро в) пробка г) бетон
- 6. Распределите ниже перечисленные материалы по степени возрастания теплоизоляционных свойств
- а) кирпич б) дерево в) минеральная вата г) асбест
- 7. Какой из перечисленных ниже металлов лучше всего проводит тепло?

а) чугун, $\lambda = 62.8 \text{ Bt/(м×K)}$							
б) медь, $\lambda = 389,6 \; \mathrm{Br/(m \times K)}$							
в) алюминий $\lambda = 209,3 \; \mathrm{Bt/(m \times K)}$							
г) платина, $\lambda = 70 \text{ Br/(м×K)}$							
8. Процесс теплообмена между движущимся теплоносителем и твердым телом называется							
а) теплообмен излучением							
б) конвективным теплообменом (конвекцией)							
в) теплопроводностью							
г) теплоизоляцией							
9. $Q = \alpha (T_1 - T_2) S$ - закон Ньютона-Рихмана							
а) теплообмена излучением							
б) передачи тепла теплопроводностью							
в) теплоизоляции							
г) конвективного теплообмена							
10. Тепловому излучению соответствует часть электромагнитного спектра излучения.							
а) оптическая б) рентгеновская в) инфракрасная г) ультрафиолетовая							
11. Отметьте реализуемые виды конвекции теплообменных аппаратах							
а) разрешенная б) вынужденная в) свободная г) запрещенная							
12. Для интенсификации конвективного теплообмена в теплообменнике поток теплоносителя							
надо							
а) турбулизировать б) ламинаризировать в) остановить г) изолировать							
13. В двигателях внутреннего сгорания с воздушным охлаждения производят оребрение							
цилиндров в целях							
а) сокращения его массы							
б) интенсификации его охлаждения							
в) в дизайнерских целях							
г) увеличения массы							
14. ЭТГА – аббревиатура, обозначающая аналогичность гидравлических, электрических,							
процессов							
а) техногенных б) технических в) технологических г) тепловых							

15. Тело полностью поглощает энергию, если коэффициент поглощения равен ...

a) A = 1

б) A = 0, 5

B) A = 0

 Γ) A=0,25.

Правильные ответы к тесту

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a	В	Γ	a	вга	абв	б	б	Γ	В	бв	a	б	Γ	a
				U	1									

Представить выполненный тест в письменной форме.

Примерная тематика сообщений.

- 1. Отечественные и зарубежные теплоэнергетики, их роль в развитии науки и техники.
- 2. Развитие теплоэнергетики в России.
- 3. Применение гидроприводов в робототехнике.
- 4. Пневмоприводы роботизированных станков
- 5. Тепловые насосы в быту.
- 6. Теплоизоляционные материалы в промышленности, строительстве и в быту...
- 7. Перспективы современного автомобильного двигателестроения.
- 8. Системы теплоснабжения экодома.
- 9. Современные приливные ГЭС.
- 10. Перспективы развития ТЭС.
- 11. Геотермальные электростанции.
- 12. Ветроэнергетика: плюсы и минусы.
- 13. Роль ГАЭС в современной электроэнергетике.
- 14. Экологические проблемы электроэнергетики.

Примерная тематика докладов.

- 1. Основные принципы работы энергетических машин: от теории к практике
- 2. Классификация энергетических машин и их применение в различных отраслях
- 3. Электрические машины: конструкции, принципы работы и области применения
- 4. Современные технологии в производстве и эксплуатации энергетических машин
- 5. Энергоэффективность и экологические аспекты работы энергетических машин
- 6. Проблемы и решения в области надежности энергетических машин
- 7. Инновационные подходы к проектированию энергетических установок
- 8. Влияние автоматизации на эффективность работы энергетических машин
- 9. Роль энергетических машин в переходе к возобновляемым источникам энергии
- 10. Сравнительный анализ различных типов генераторов: преимущества и недостатки
- 11. Технологии диагностики и мониторинга состояния энергетических машин
- 12. Энергетические машины в транспортной отрасли: вызовы и перспективы
- 13. Перспективы развития электродвигателей в условиях современных технологий
- 14. Анализ рынка энергетических машин: тенденции и прогнозы
- 15. Энергетические машины и устойчивое развитие: вызовы и возможности

Примерные вопросы к экзамену:

- 1. Теплота и работа как формы энергетического взаимодействия внешней среды и рабочего тела.
- 2. Основные параметры состояния рабочего тела. Идеальный газ. Уравнение состояния идеального газа.
- 3. Сущность первого закона термодинамики. Работа процесса. Графическое изображение работы в рv диаграмме.
- 4. Энтальпия. Теплоемкость газов. Теплоемкость идеального газа при постоянном давлении и при постоянном объеме.
- 5. Энтропия. Диаграмма Тs. Графическое изображение теплоты в диаграмме Тs.
- 6. Сущность второго закона термодинамики и его основные формулировки.
- 7. Термодинамические процессы идеальных газов.
- 8. Процессы парообразования в рv- и Тs-диаграммах.
- 9. Способы распространения тепла и виды теплообмена.
- 10. Теплопроводность. Коэффициент теплопроводности. Термическое сопротивление.
- 11. Конвективный теплообмен. Формула Ньютона Рихмана. Коэффициент теплоотдачи.
- 12. Излучение энергии. Законы излучения.
- 13. Уравнение теплопередачи. Коэффициент теплопередачи.
- 14. Теплообменные аппараты.
- 15. Топливные ресурсы и их характеристики.
- 16. Котельные агрегаты и установки. Устройство и принцип работы основных типов паровых котлов.
- 17. Двигатели внутреннего сгорания. Принципиальные схемы. Области применения.
- 18. Идеальный цикл паросиловой установки, термический КПД и пути его повышения.
- 19. Газотурбинные двигатели (Г.Т.Д), принципиальная схема, характеристика, принцип работы.
- 20. Реактивные двигатели, их классификация.
- 21. Паровая компрессионная холодильная установка, схема, принцип действия и идеальный цикл.
- 22. Классификация и области применения гидравлических машин.
- 23. Насосы. Классификация по принципу действия. Основные параметры, области применения.
- 24. Типы и основы работы гидравлических турбин.
- 25. Гидропривод. Основные понятия и определения. Классификация, назначение.
- 26. Возобновляемые и невозобновляемые энергоресурсы.
- 27. Тепловые электрические станции (ТЭС): конденсационные электростанции и теплоэлектроцентрали (ТЭЦ).
- 28. Атомные электростанции (АЭС). Основные схемы и характеристики АЭС.
- 29. Гидроэлектростанции (ГЭС): плотинные, деривационные, гидроаккумулирующие, приливные.
- 30. Перспективы развития энергетики. Экологические проблемы современной энергетики.

5.4.Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенний

Требования к тестированию

Предлагаемые тестовые задания предназначены для повторения пройденного материала и закрепления знаний, главная цель тестов - систематизировать знания студентов.

Во всех тестовых заданиях необходимо выбрать правильный из предлагаемых ответов, завершить определение либо вставить недостающий термин. Текущий контроль знаний в виде тестирования, проводится в рамках практического занятия.

Написание теста оценивается по шкале от 0 до 25 баллов. Освоение компетенций зависит от результата написания теста.

Требования к сообщению

Сообщение — продукт самостоятельной работы студента, представляющий собой публичное выступление по представлению полученных результатов решения определенной учебно-практической, учебно-исследовательской или научной темы.

Требования по оформлению сообщения

Последовательность подготовки сообщения:

- 1. Подберите и изучите литературу по теме.
- 2. Составьте план сообщения.
- 3. Выделите основные понятия.
- 4. Введите в текст дополнительные данные, характеризующие объект изучения.
- 5. Оформите текст письменно.
- 6. Подготовьте устное выступление с сообщением на учебном занятии Само выступление должно состоять из трех частей вступления (10-15% общего времени), основной части (60-70%) и заключения (20-25%).

Требования к оформлению текста

Общий объем не должен превышать 5 страниц формата А 4, абзац должен равняться 1,25 см.

Поля страницы: левое - 3 см., правое - 1,0 см., нижнее 2 см., верхнее - 2 см. Текст печатается через 1,5 интервала. Если текст набирается в текстовом редакторе Microsoft Word, рекомендуется использовать шрифты: Times New Roman, размер шрифта - 14 пт.

После заголовка, располагаемого посредине строки, не ставится точка. Не допускается подчеркивание заголовка и переносы в словах заголовка.

Страницы нумеруются в нарастающем порядке. Номера страниц ставятся внизу листа по центру, размер шрифта - 12 пт

Титульный лист включается в общую нумерацию, но номер страницы на нем не проставляется (это не относится к содержанию сообщения).

Требования по написанию докладов

Доклад - это краткое сообщение по заданной преподавателем теме, в котором собрана информация из одного или нескольких источников. Доклад может являться изложением содержания научной работы, статьи и т.п. При разработке доклада обучающийся должен учитывать: - степень раскрытия темы; - какой личный вклад он внес в разработку эссе; - логическую структурированность материала; - использование постраничных ссылок; - достаточность объема и качества используемых источников; - оформление текста и грамотности речи. При написании докладов необходимо выделить проблему обсуждения, составить план, выделить смысловые части обсуждаемой проблемы по каждому пункту плана, подобрать литературу. Для подбора литературы необходимо пользоваться списком дополнительной литературы и списком литературы, рекомендуемой для углубленного изучения курса, а также Интернет-ресурсами.

Требования к экзамену

Промежуточная аттестация по дисциплине определяет степень усвоения знаний, умений и навыков студентов по учебному материалу семестра, проводится в виде экзамена.

К экзамену допускаются студенты, успешно выполнившие все задания на практических занятиях и по самостоятельной работе.

Экзамену по дисциплине проводится включает в себя отчет по выполнению всех практических/лабораторных заданий по темам и заданий по самостоятельной работе. На экзамене по дисциплине студент должен ответить на теоретические вопросы.

Выбор формы и порядок проведения экзамена осуществляется кафедрой. Оценка знаний студента в процессе зачета осуществляется исходя из следующих критериев:

- а) умение сформулировать определения понятий, данных в вопросе, с использованием специальной терминологии, показать связи между понятиями;
- б) способность дать развернутый ответ на поставленный вопрос с соблюдением логики изложения материала; проанализировать и сопоставить различные точки зрения на поставленную проблему;
 - в) умение аргументировать собственную точку зрения.

<u>При оценке студента на экзамене преподаватель руководствуется следующими критериями:</u>

Шкала оценивания экзамена

- 30-25 баллов плановые практические задания выполнены в полном объеме; приведен полный, исчерпывающе правильный ответ и даны исчерпывающие верные рассуждения; устный ответ на вопросы констатирует прочное усвоение знаний и умений.
- 24-18 баллов плановые практические задания выполнены в полном объеме; поставленные задачи решены правильно, однако рассуждения, приводящие к ответу, представлены не в полном объеме, или в них содержатся логические недочеты; устный ответ на вопросы содержит неточности, незначительные погрешности в изложении теории.
- 17-9 баллов плановые практические задания выполнены, даны правильные ответы, но в некоторых из них допущены ошибки; устный ответ на вопросы показывает отдельные пробелы в знаниях студента.
- 8-5 балла плановые практические задания выполнены не в полном объеме; устный ответ на вопросы содержит грубые ошибки в изложении теории, которые показывают значительные пробелы в знаниях студента; более половины вопросов оказались без ответов; знания и умения не соответствуют требованиям программы.
- 4-0 баллов не выполнены плановые практические задания, студент объявляет о непонимании материала дисциплины, о полном незнании ответа на поставленные теоретические вопросы

Распределение баллов по видам работ

Вид работы	Кол-во баллов (максимальное значение)
Сообщение	до 20 баллов
Тестирование	до 25 баллов
Доклад	до 25 баллов
Экзамен	до 30 баллов

Итоговая шкалы оценивания по дисциплине

При выставлении итоговой оценки преподавателем учитывается работа студента в течение всего срока освоения дисциплины, а также баллы, полученные на промежуточной аттестации

Цифровое	Выражени	Словесное выражение	Описание оценки в требованиях к уровню
выражени	е в баллах		и объему компетенций
e	БРС		
5	81-100	отлично	Освоен продвинутый уровень всех
			составляющих компетенций ДПК-7,УК-1
4	61-80	хорошо	Освоен повышенный уровень всех
			составляющих компетенций ДПК-7,УК-1
3	41-60	удовлетворительно	Освоен базовый уровень всех
			составляющих компетенций ДПК-7,УК-1
2	до 40	неудовлетворительно	Не освоен базовый уровень всех
		_	составляющих компетенций ДПК-7,УК-1

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная литература

- **1.** Белов, Г. В. Техническая термодинамика : учебное пособие для вузов / Г. В. Белов. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2023. 252 с. (Высшее образование). ISBN 978-5-534-05091-2. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/512471
- **2.** Калекин, В. С. Гидравлика и теплотехника : учебное пособие для вузов / В. С. Калекин, С. Н. Михайлец. 2-е изд. Москва : Издательство Юрайт, 2023. 318 с. (Высшее образование). ISBN 978-5-534-11738-7. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/518263

6.2. Дополнительная литература

1. Быстрицкий, Г. Ф. Основы теплотехники и энергосиловое оборудование промышленных предприятий: учебник для среднего профессионального образования / Г. Ф. Быстрицкий. — 5-е изд., испр. и доп. — Москва: Издательство Юрайт, 2023. — 305 с. — (Профессиональное образование). — ISBN 978-5-534-12281-7. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/518440

6.2. Ресурсы информационно-телекоммуникационной сети «Интернет»

- 1. http://mon.gov.ru Министерство образования и науки РΦ;
- 2. http://www.fasi.gov.ru Федеральное агентство по науке и образованию;
- 3. http://www.edu.ru Федеральный портал «Российское образование»;
- 4. http://www.garant.ru информационно-правовой портал «Гарант»
- 5. http://www.school.edu.ru Российский общеобразовательный портал;
- 6. http://www.openet.edu.ru Российский портал открытого образования;
- 7. http://www.ict.edu.ru портал по информационно-коммуникационным технологиям в образовании;

- 8. http://www.fepo.ru портал Федерального Интернет-экзамена в сфере профессионального образования.
 - 9. http://pedagogic.ru педагогическая библиотека;
 - 10. http://www.ug.ru «Учительская газета»;
 - 11. http://www.pedpro.ru журнал «Педагогика»;
- 12. http://www.informika.ru/about/informatization_pub/about/276 научнометодический журнал «Информатизация образования и науки»;
 - 13. http://www.hetoday.org журнал «Высшее образование сегодня».
 - 14. http://www.znanie.org Общество «Знание» России
- 15. http://www.gpntb.ru Государственная публичная научно-техническая библиотека.
 - 16. http://www.znanium.com/ Электронно-библиотечная система
 - 17. http://www.biblioclub.ru/ Университетская библиотека онлайн
 - 18. http://www.elibrary.ru Научная электронная библиотека
 - 19. Каталог образовательных решений Лего.

https://education.lego.com/ru-ru/learn/elementary/wedo

https://education.lego.com/ru-ru/learn/elementary/machines-and-mechanisms

https://education.lego.com/ru-ru/learn/middle-school/mindstorms-ev3

http://www.lego.com/ru-ru/mindstorms/build-a-robot

7.МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

1.Методические рекомендации по организации и выполнению самостоятельной работы студентов

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows
Microsoft Office

Kaspersky Endpoint Security

Информационные справочные системы:

Система ГАРАНТ

Система «КонсультантПлюс»

Профессиональные базы данных:

<u>fgosvo.ru – Портал Федеральных государственных образовательных стандартов</u> высшего образования

pravo.gov.ru - Официальный интернет-портал правовой информации

www.edu.ru – Федеральный портал Российское образование

Свободно распространяемое программное обеспечение, в том числе отечественного производства

<u>ОМС Плеер (для воспроизведения Электронных Учебных Модулей)</u> 7-zip

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения занятий лекционного и лабораторного типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные учебной мебелью, доской, лабораторным оборудованием;
- помещения для самостоятельной работы, укомплектованные учебной мебелью, персональными компьютерами с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду МГОУ;
- помещения для хранения и профилактического обслуживания учебного оборудования, укомплектованные мебелью (шкафы/стеллажи), наборами демонстрационного оборудования и учебно-наглядными пособиями;

Практические занятия - комплект учебной мебели, персональный компьютер с подключением к сети Интернет, далее из РПД спец. оборудование.