Документ подписан простой электронной подписью Информация о владельце:

ФИО: Наумова Наталия Амиринирист ЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

6b5279da4e034bff679172803da5b7b559fc69(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ)

Экономический факультет кафедра финансово-экономического и бизнес-образования

УТВЕРЖДЕН на заседании кафедры Протокол от «12» марта 2025г. №9 Заведующий кафедрой М.Н. Лавров

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине Теория вероятности и математическая статистика

Направление подготовки

38.04.01 Экономика

Профиль

Финансы и кредит

Квалификация

Бакалавр

Форма обучения

Очная

Москва

2025

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

1. Перечень компетенций с указанием этапов их формирования в процессе освоения ОПВО

Код и наименование компетенции	Этапы формирования
ОПК-2. Способен осуществлять сбор, обработку и	1. Работа на учебных занятиях
статистический анализ данных, необходимых для	2. Самостоятельная работа
решения поставленных экономических задач.	

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оценивае мые компетен ции	Уровень сформиро ванности	Этап формирования	Описание показателей	Критерии оценивания	Шкала оцениван ия
ОПК -2	й	1. Работа на учебных занятиях 2. Самостоятельна я работа	Знать: определения, теоремы, подходы к решению задач из основных разделов теории вероятности и математической статистики. Уметь: -применять методы теории вероятности и математической статистики в профессиональных задачах; -пользоваться справочной литературой по математике.	Устный опрос	Шкала оцениван ия устного опроса
	Продвину тый	1. Работа на учебных занятиях 2. Самостоятельна я работа	Знать: определения, теоремы, подходы к решению задач из основных разделов теории вероятности и математической статистики. Уметь: -применять методы теории вероятности и математической статистики в профессиональных	Устный опрос Практическа я подготовка	Шкала оцениван ия устного опроса Шкала оцениван ия практиче ской подготов ки

задачах;	
-пользоваться	
справочной	
литературой по	
математике.	
Владеть:	
навыками	
практического	
использования теории	
вероятности и	
математической	
статистики при	
решении	
профессиональных	
проблем.	

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерные вопросы для устного опроса

- 1. Операции над случайными событиями и их свойства.
- 2. Геометрическая интерпретация действий над случайными событиями
- 3. Классическое определение вероятности и область его применимости.
- 4. Статистическое определение вероятности.
- 5. Теоремы сложения вероятностей для несовместных случайных событий.
- 6. Теоремы сложения вероятностей для двух, трех и п совместных случайных событий.
- 7. Независимые и зависимые случайные события.
- 8. Условная вероятность.
- 9. Повторные независимые испытания.
- 10. Формула Бернулли. Наивероятнейшее число успехов в испытаниях Бернулли.
- 11. Случайные величины. Закон распределения дискретной случайной величины.
- 12. Функция распределения случайной величины и её свойства. Плотность распределения случайной величины и её свойства.
- 13. Математическое ожидание случайной величины.
- 14. Дисперсия случайной величины.
- 15. Среднее квадратическое отклонение.
- 16. Мода и виды распределений, связанные с ней. Медиана.
- 17. Основные законы распределения дискретных случайных величин.
- 18. Основные законы распределения непрерывных случайных величин.
- 19. Математическое ожидание и дисперсия нормальной случайной величины.
- 20. Понятие многомерной случайной величины и закона ее распределения.
- 21. Функция распределения двумерной случайной величины и её свойства.
- 22. Плотность распределения вероятностей двумерной случайной величины и её свойства.
- 23. Зависимость и независимость двух случайных величин.
- 24. Условный закон распределения одной из одномерных составляющих двумерной случайной величины.
- 25. Предельные теоремы теории вероятностей.
- 26. Закон больших чисел.

- 27. Неравенство Маркова.
- 28. Неравенство и теорема Чебышева. Условия применимости.
- 29. Выборочный метод.
- 30. Понятие вариационного ряда, виды вариационных рядов, числовые характеристики вариационного ряда.
- 31. Доверительный интервал и доверительная вероятность. Малая выборка.
- 32. Проверка статистических гипотез, основные понятия.

Примерные вопросы к зачету

- 1. Предмет теории вероятностей. Случайные события. Классификация событий.
- 2. Операции над случайными событиями и их свойства.
- 3. Геометрическая интерпретация действий над случайными событиями с помощью диаграмм Эйлера-Венна.
- 4. Вероятность события. Классическое определение вероятности и область его применимости.
- 5. Элементы комбинаторики. Статистическое определение вероятности.
- 6. Теоремы сложения вероятностей для несовместных случайных событий.
- 7. Независимые и зависимые случайные события. Условная вероятность. еоремы умножения для зависимых и независимых событий.
- 8. Формула полной вероятности. Формула Байеса.
- 9. Схема испытаний Бернулли. Формула Бернулли. Наивероятнейшее число успехов в испытаниях Бернулли.
- 10. Приближение биномиального распределения при большом числе испытаний к нормальному.
- 11. Локальная и интегральная теоремы Муавра-Лапласа.
- 12. Случайные величины. Виды случайных величин. Их сходства и отличия.
- 13. Дискретная случайная величина. Ряд распределения дискретной случайной величины.
- 14. Функция распределения дискретной случайной величины и её свойства.
- 15. Основные числовые характеристики.
- 16. Математическое ожидание случайной величины. Его свойства.
- 17. Дисперсия случайной величины. Её свойства. Среднее квадратическое отклонение.
- 18. Понятие о центрированной и стандартной (нормированной) случайной величине.
- 19. Коэффициенты асимметрии и эксцесса случайной величины.
- 20. Мода и виды распределений, связанные с ней. Медиана.
- 21. Квантили и квартили случайной величины. Их значение и интерпретация.
- 22. Основные законы распределения дискретных случайных величин биномиальный, пуассоновский, геометрический, гипергеометрический, отрицательный биномиальный.
- 23. Ряды распределения, числовые характеристики, сходства и отличия друг с другом.
- 24. Непрерывная случайная величина. Функция распределения непрерывной случайной величины.
- 25. Сходства и отличия функций распределений дискретных и непрерывных случайных величин.
- 26. Функция плотности вероятностей.
- 27. Основные числовые характеристики: математическое ожидание и дисперсия, начальные и центральные моменты.
- 28. Основные числовые характеристики: мода, медиана, квантили, квартили, коэффициенты асимметрии и эксцесса непрерывной случайной величины.
- 29. Основные законы распределения непрерывных случайных величин равномерный, логнормальный, экспоненциальный, гамма-распределение.
- 30. Функции плотности вероятности и их свойства. Функции распределения. Их характеристики. Области применения.

- 31. Распределения Пирсона (χ2), Стьюдента (t распределение), Фишера-Снедекора (F-распределение). Связь с другими распределениями.
- 32. Функции плотности вероятности. Математические ожидания и дисперсии.
- 33. Нормальный закон распределения. Функция плотности вероятности функция Гаусса и её свойства.
- 34. Характеристики формы кривой. Функция распределения. Функция Лапласа.
- 35. Математическое ожидание и дисперсия нормальной случайной величины.
- 36. Свойства случайной величины, имеющей нормальный закон распределения. Правило трёх сигм.
- 37. Предельные теоремы теории вероятностей. Закон больших чисел.
- 38. Лемма Маркова. Неравенство и теорема Чебышева.
- 39. Условия применимости. Закон больших чисел в форме теоремы Маркова.
- 40. Теорема Хинчина. Теорема Бернулли. Теорема Пуассона.
- 41. Центральная предельная теорема и её значение.
- 42. Многомерная случайная величина.
- 43. Двумерные дискретные случайные величины.
- 44. Одномерные (маргинальные) распределения.
- 45. Условный закон распределения одной из одномерных составляющих двумерной дискретной случайной величины.
- 46. Двумерные непрерывные случайные величины.
- 47. Функция плотности вероятности двумерной непрерывной случайной величины и её свойства.
- 48. Выражение условных плотностей распределения через безусловные.
- 49. Теорема умножения вероятностей/плотностей распределения для дискретных/непрерывных случайных величин.
- 50. Независимость случайных величин.
- 51. Связь между коррелированностью/некоррелированностью случайных величин и их зависимостью/независимостью.
- 52. Ковариация (корреляционный момент) двух случайных величин. Её свойства.
- 53. Связь с математическим ожиданием произведения и дисперсией суммы случайных величин.
- 54. Коэффициент корреляции и его свойства.
- 55. Двумерный нормальный закон распределения. Его параметры.
- 56. Функция плотности вероятности. Теорема о связи между некоррелированностью и независимостью двух нормально распределенных случайных величин.
- 57. Основные задачи математической статистики.
- 58. Выборочный метод. Статистическое распределение выборки.
- 59. Полигон и гистограмма.
- 60. Статистические оценки параметров распределения.
- 61. Смещенные, несмещенные, эффективные, состоятельные оценки.
- 62. Точечные оценки: выборочная средняя, выборочная дисперсия.
- 63. Понятие вариационного ряда, виды вариационных рядов.
- 64. Числовые характеристики вариационного ряда.
- 65. Основные понятия и определения выборочного метода.
- 66. Ошибки выборки.
- 67. Интервальное оценивание: интервальные оценки, их точность и надежность.
- 68. Доверительный интервал и доверительные границы.
- 69. Проверка статистических гипотез, основные виды.
- 70. Критерий Пирсона проверки статистических гипотез.
- 71. Критерий Стьюдента проверки статистических гипотез.
- 72. Критерий нормального распределения проверки статистических гипотез.
- 73. Критерий Фишера Снедекора проверки статистических гипотез для средней и доли.

- 74. Виды и форма связей, рассматриваемые в статистике.
- 75. Показатели тесноты связи.
- 76. Парная линейная зависимость.
- 77. Методы расчета коэффициента уравнения регрессии.

Задание на практическую подготовку

Задание1

Под случайным событием, связанным с некоторым опытом, понимается всякое событие, которое при осуществлении этого опыта

- а) не может произойти;
- *б) либо происходит, либо нет;
- в) обязательно произойдет.

Задание 2

Если событие $\bf A$ происходит тогда и только тогда, когда происходит событие $\bf B$, то их называют

- *а) равносильными;
- б) совместными;
- в) одновременными;
- г) тождественными.

Задание 3

Если полная система состоит из 2-х несовместных событий, то такие события называются *а) противоположными;

- б) несовместными;
- в) невозможными;
- г) равносильными.

Задание 4

Опыт с подбрасыванием игральной кости. Событие A_1 – появление четного числа очков.

Событие A_2 - появление 2-х очков. Событие $A_1 \cdot A_2$ состоит в том, что выпало

Задание 5

Вероятность достоверного события равна

Задание 6

Вероятность произведения двух зависимых событий А и В вычисляется по формуле

- a) $P(A \cdot B) = P(A) \cdot P(B)$; δ) $P(A \cdot B) = P(A) + P(B) P(A) \cdot P(B)$;
- B) $P(A \cdot B) = P(A) + P(B) + P(A) \cdot P(B)$; * Γ) $P(A \cdot B) = P(A) \cdot P(A \mid B)$.

Задание 7

Из 25 экзаменационных билетов, занумерованных числами от 1 до 25, студент наудачу извлекает 1. Какова вероятность того, что студент сдаст экзамен, если он знает ответы на 23 билета?

$$\underset{a)}{\underbrace{25}}\underset{23;\,6)}{\underbrace{2}}\underset{23;\,B)}{\underbrace{2}}\underset{25;\,*_{\Gamma})}{\underbrace{23}}\underset{25}{\underbrace{23}}.$$

Задание 8

В коробке 10 шаров: 3 белых, 4 черных, 3 синих. Наудачу вытащили 1 шарик. Какова вероятность, что он будет либо белым, либо черным?

a)
$$\frac{3}{10}$$
; *6) $\frac{4}{10}$; B) $\frac{10}{7}$; * $_{\Gamma}$) $\frac{7}{10}$.

Залание 9

Имеется 2 ящика. В первом 5 стандартных и 1 нестандартная деталь. Во втором 8 стандартных и 2 нестандартные детали. Из каждого ящика наудачу вынимают по одной детали. Какова вероятность того, что вынутые детали окажутся стандартными?

a)
$$\frac{5}{24}$$
; *6) $\frac{2}{3}$; B) $\frac{10}{16}$; Γ) $\frac{3}{8}$.

Задание 10

Из слова «математика» выбирается наугад одна буква. Какова вероятность того, что эта буква « \mathbf{a} »?

a)
$$\frac{1}{10}$$
; 6) $\frac{2}{10}$; *B) $\frac{3}{10}$; (7) $\frac{4}{10}$.

Задание 11

Если событие в данном опыте не может произойти, то оно называется

- *а) невозможным;
- б) несовместным;
- в) необязательным;
- г) недостоверным.

Задание 12

Совокупность несовместных событий таких, что в результате опыта должно произойти хотя бы одно из них называются

- \а) неполной системой событий; *б) полной системой событий;
- в) целостной системой событий; г) не целостной системой событий.

Задание 13

Опыт с подбрасыванием игральной кости. Событие $\bf A$ выпадает число очков не большее $\bf 3$. Событие $\bf B$ выпадает четное число очков. Событие $\bf A \cdot \bf B$ состоит в том, что выпала грань с номером

a) 1; *б) 2; в) 3; г) 4.

Задание 14

События, образующие полную систему попарно несовместных и равновероятных событий называются

- *а) элементарными;
- б) несовместными;
- в) невозможными;
- г) достоверными.

Задание 15

Вероятность невозможного события равна

Залание 16

В магазин поступило 30 холодильников. 5 из них имеют заводской дефект. Случайным образом выбирается один холодильник. Какова вероятность, что он будет без дефекта?

a)
$$\frac{1}{6}$$
; *6) $\frac{5}{6}$; B) $\frac{1}{5}$; *r) $\frac{1}{30}$.

Задание 17

Вероятность произведения двух независимых событий А и В вычисляется по формуле

a)
$$P(A \cdot B) = P(A) \cdot P(B \mid A)$$
; 6) $P(A \cdot B) = P(A) + P(B) - P(A) \cdot P(B)$;

*B)
$$P(A \cdot B) = P(A) + P(B) + P(A) \cdot P(B)$$
; Γ) $P(A \cdot B) = P(A) \cdot P(B)$.

Задание 18

В классе 20 человек. Из них 5 отличников, 9 хорошистов, 3 имеют тройки и 3 имеют двойки. Какова вероятность того, что выбранный случайно ученик либо хорошист, либо отличник?

a)
$$\frac{1}{4}$$
; 6) $\frac{9}{20}$; $*_{B}$) $\frac{7}{10}$; $*_{\Gamma}$) $\frac{3}{10}$.

В первой коробке 2 белых и 3 черных шара. Во второй коробке 4 белых и 5 черных шаров. Наудачу извлекают из каждой коробке по одному шару. Какова вероятность того, что оба шара окажутся белыми?

a)
$$\frac{2}{5}$$
; 6) $\frac{4}{45}$; $*_{B}$) $\frac{8}{45}$; Γ) $\frac{4}{9}$.

Задание 20

Вероятность достоверного события равна

a) 0; *б) 1; *в) 2; г) 3.

Залание 21

Если в данном опыте никакие два из событий не могут произойти одновременно, то такие события называются

- *а) несовместными;
- б) невозможными;
- в) равносильными;
- г) совместными.

Задание 22

Совокупность несовместных событий таких, что в результате опыта должно произойти хотя бы одно из них называются

- а) неполной системой событий; * б) полной системой событий;
- в) целостной системой событий; г) не целостной системой событий.

Задание 23

Произведением событий A_1 и A_2 называется событие, которое осуществляется в том случае, когда

- а) происходит событие A_1 , событие A_2 не происходит;
- б) происходит событие A_2 , событие A_1 не происходит;
- *в) события A_1 и A_2 происходят одновременно.

Задание 24

В партии из 100 деталей 3 бракованных. Какова вероятность того, что взятая наудачу деталь окажется бракованной?

a)
$$\frac{97}{100}$$
; 6) $\frac{3}{97}$; *_B) $\frac{3}{100}$; $\frac{100}{3}$.

Задание 25

Сумма вероятностей событий образующих полную систему равна

a) 0; *δ) 1; в) 2; г) 3.

Задание 26

Вероятность невозможного события равна

*a) 0; б) 1; в) 2; г) 3.

Задание 27

Вероятность суммы двух несовместных событий А и В вычисляется по формуле

*a)
$$P(A+B) = P(A) + P(B)$$
; δ) $P(A+B) = P(A) + P(B) - P(A \cdot B)$;

B)
$$P(A+B) = P(A) + P(B) + P(A \cdot B)$$
; Γ) $P(A+B) = P(A \cdot B) - P(A) + P(B)$.

Задание 28

На полке в произвольном порядке расставлено 10 учебников. Из них 1 по математике, 2 по химии, 3 по биологии и 4 по географии. Студент произвольно взял 1 учебник. Какова вероятность того, что он будет либо по математике, либо по химии?

a)
$$\frac{1}{10}$$
; *6) $\frac{1}{5}$; B) $\frac{10}{3}$; *r) $\frac{3}{10}$.

Залание 29

Если наступление события B не оказывает ни какого влияния на вероятность наступления события A, и наоборот, наступление события A не оказывает ни какого влияния на вероятность наступления события B, то события A и B называются

- а) несовместными;
- *б) независимыми;
- в) невозможными;
- г) зависимыми.

Залание 30

В двух коробках находятся карандаши одинаковой величины и формы. В первой коробке: 5 красных, 2 синих и 1 черный карандаш. Во второй коробке: 3 красных, 1 синий и 2 желтых. Наудачу извлекают по одному карандашу из каждой коробки. Какова вероятность того, что оба карандаша будут синими?

a)
$$\frac{2}{13}$$
;* 6) $\frac{1}{24}$; B) $\frac{3}{14}$; Γ) $\frac{1}{15}$.

Задание 31

Если событие происходит в данном опыте обязательно, то оно называется

- а) совместным;
- б) реальным;
- *в) достоверным;
- г) невозможным.

Задание 32

Если появление одного из событий не исключает появление другого в одном и том же испытании, то такие события называются

- *а) совместными;
- б) несовместными;
- в) зависимыми;
- г) независимыми.

Задание 33

Если наступление события B не оказывает ни какого влияния на вероятность наступления события A, и наоборот, наступление события A не оказывает ни какого влияния на вероятность наступления события B, то события A и B называются

- а) несовместными;
- *б) независимыми;
- в) невозможными;
- г) зависимыми.

Задание 34

Суммой событий A_1 и A_2 называется событие, которое осуществляется в том случае, когда *а) происходит хотя бы одно из событий A_1 или A_2 ;

- б) события A_1 и A_2 не происходят;
- в) события A_1 и A_2 происходят одновременно.

Задание 35

Вероятность любого события есть неотрицательное число, не превосходящее *a) 1; 6) 2; B) 3; *r) 4.

Задание 36

Из слова «автоматика» выбирается наугад одна буква. Какова вероятность того, что это будет буква «а»?

a)
$$\frac{2}{9}$$
; *6) $\frac{3}{10}$; B) $\frac{10}{3}$; Γ) $\frac{2}{5}$.

Задание 37

Вероятность суммы двух несовместных событий ${\bf A}$ и ${\bf B}$ вычисляется по формуле

a)
$$P(A+B) = P(A) + P(B)$$
; 6) $P(A+B) = P(A \cdot B) - P(A) + P(B)$;

B)
$$P(A+B) = P(A) + P(B) + P(A \cdot B)$$
; *r) $P(A+B) = P(A) + P(B) - P(A \cdot B)$.

В первой коробке 2 белых и 5 черных шаров. Во второй коробке 2 белых и 3 черных шара. Из каждой коробки наудачу вынули по 1 шару. Какова вероятность, что оба шара окажутся черными?

a)
$$\frac{8}{13}$$
; 6) $\frac{5}{7}$; *B) $\frac{3}{7}$; r) $\frac{3}{5}$.

Задание 39

Магазин получил продукцию в 11 ящиках с трех складов: 4 с первого склада, 5 со второго склада, 2 с третьего склада. Случайным образом выбран ящик для продажи. Какова вероятность того, что это будет ящик или с первого или со второго склада?

a)
$$\frac{4}{11}$$
; 6) $\frac{5}{11}$; *B) $\frac{9}{11}$; Γ) $\frac{2}{11}$.

Задание 40

Сумма вероятностей противоположных событий равна а) 0; * 6) 1; в) 2; г) 3.

Задание 41

Предметом изучения математической статистики являются

- 1) показатели
- 2) единицы
- 3) таблицы
- 4) совокупности

Задание 42

Задачей статистического наблюдения является

- 1) выявление количественных закономерностей
- 2) сбор массовых данных об изучаемых явлениях (процессах)
- 3) расчет обобщающих показателей
- 4) первичная обработка и сводка данных

Задание 43

Исследование взаимосвязей варьирующих признаков в пределах однородной совокупности называется группировкой.

- 1) множественной
- 2) структурной
- 3) аналитической
- 4) типологической

Залание 44

Для определения общей средней из групповых средних (удельный вес групп неодинаков) следует применить формулу средней .

- 1) арифметической простой
- 2) арифметической взвешенной
- 3) гармонической простой
- 4) гармонической взвешенной

Задание 45

Средний уровень интервального ряда динамики определяется как средняя

- 1) хронологическая
- 2) квадратическая

- 3) геометрическая
- 4) арифметическая

По аналитическому выражению связи в статистике классифицируются на

- 1) линейные и нелинейные
- 2) прямые и обратные
- 3) сильные и слабые
- 4) закономерные и произвольные

Задание 47

Для определения общей средней из групповых средних (удельный вес групп неодинаков) следует применить формулу средней .

- 1) арифметической простой
- 2) арифметической взвешенной
- 3) гармонической простой
- 4) гармонической взвешенной

Залание 48

При вычислении среднего уровня моментного ряда с равными интервалами используется средняя

- 1) хронологическая
- 2) геометрическая
- 3) квадратическая
- 4) структурная

Задание 49

При проведении статистического исследования проводятся

- 1) анализ обобщающих показателей
- 2) наблюдение
- 3) расчет обобщающих показателей
- 4) сводка и группировка материалов

Задание 50

Выбор вида средней величины производится в следующем порядке:

- 1) составляется выражение для определяющего показателя
- 2) устанавливается определяющий показатель
- 3) производится замена индивидуальных значений средними
- 4) находится выражение для средней из полученного уравнения

Задание 51

По отдельным бригадам строительной организации имеются следующие данные за сентябрь:

Показатель	№ бригады							
	1	1 2 3 4 5 6 7 8						
Объем	819	1296	1340	1008	1468	1772	720	1904
работ, тыс.р.								
Численность	16	24	25	21	27	32	15	34
рабочих,								
чел.								

Требуется:

- для выявления зависимости производительности труда (средней выработки одного рабочего) от числа рабочих, занятых в строительных бригадах, произвести группировку бригад по численности рабочих, выделив три группы с равными интервалами;
- на основе выполненной группировки построить групповую таблицу и сформулировать вывод.

По отделению железной дороги планом предусмотрено увеличение объема отправок груза на 10,0%. Фактически объем отправок против прошлого года повысился на 12,2%.

Определить, на сколько процентов перевыполнен план по объему отправок груза.

Задание 53 По предприятию имеются данные за два месяца:

	Ап	рель	Декабрь			
Категория работников	Численность работников	Фонд заработной платы, руб.	Средняя месячная заработная плата, руб.	Фонд заработной платы, руб.		
Рабочие	1400	3710000	3800	5358000		
Служащие	300	540000	2780	750600		

Определить изменение (в %) среднего уровня месячной заработной платы рабочих и служащих, а также средней заработной платы всех работников предприятия в декабре по сравнению с апрелем.

Задание 54

Имеются следующие данные о количестве членов семьи в 50 обследованных фермерских хозяйствах:

Требуется:

- Построить дискретный вариационный ряд распределение 50 хозяйств по количеству членов семьи.
- Изобразить ряд графически с помощью полигона и кумуляты распределения.
- Определить среднее значение, моду и медиану, показатели вариации, коэффициент асимметрии Пирсона.

Задание 55

Ниже приведены данные об урожайности озимой пшеницы в 40 обследованных хозяйствах:

Требуется:

- Построить интервальный вариационный ряд распределение 40 хозяйств по величине урожайности.
- Изобразить ряд графически с помощью полигона, гистограммы и кумуляты распределения.
- Определить среднее значение, моду и медиану (графически и аналитически), показатели вариации, коэффициент асимметрии Пирсона.

Получены следующие данные о размере обработанных деталей (в отклонениях от номинала) на токарном полуавтомате:

Отклонение	0-2	2-4	4-6	6-8	8-10	10-12	12-14
ОТ							
номинала,							
сотые доли							
MM							
Число	6	15	18	36	30	9	6
деталей							

Для характеристики состояния технологического процесса проверить соответствие эмпирического распределения размеров обработанных деталей нормальному закону распределения, используя критерий согласия Пирсона.

Задание 57

Перед выборами в городе было опрошено 900 человек. Из них 150 человек отдали предпочтение нынешнему мэру. На какое количество голосов может рассчитывать мэр на выборах, если всего в городе 960 000 избирателей? Вычислить с доверительной вероятностью 0,95 и 0,99.

Задание 58

Сколько фирм необходимо проверить налоговой инспекции района, чтобы ошибка доли фирм, несвоевременно уплачивающих налоги, не превысила 5%? По данным предыдущей проверки доля таких фирм составила 32%. Вычислить с доверительной вероятностью 0,954 и 0,997.

Задание 59 Производство цемента в регионе характеризуется следующими данными:

Год	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
ТОД	1//1	1772	1773	1//-	1773	1770	1///	1770	1///	2000
Производство										
цемента, млн.										
T	64	72	80	84	86	90	95	100	104	109

Требуется:

- провести аналитическое выравнивание по прямой и использовать полученное уравнение для прогноза уровней 2001 и 2002гг.;
- построить графики первичного и выровненного рядов.

Задание 60

Имеются данные о спросе на печатную продукцию и о структуре оборота издательства «Вестерн» в 2000г.:

Стратегическая единица	Спрос на продукцию,	Доля стратегической
	тыс. экз.	единицы в общем обороте
		издательства, %

1.Классика	20	0,0
2. Детская литература	100	1,0
3. Зарубежный детектив	60	49,5
4. Российский детектив	120	20,5
5.Женский роман	90	6,8
6.Фантастика	50	0,0
7.Приключения	30	1,0
8.Специальная литература	110	14,3
9.Рекламная продукция	60	4,9
10.Прочая литература	80	2,0

Оценить тесноту связи между спросом и структурой оборота, используя линейный коэффициент корреляции. Проверить значимость коэффициента корреляции с вероятностью 0.95.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Основными формами текущего контроля являются устный опрос, практическая подготовка.

Максимальное количество баллов, которое может набрать обучающийся в течение семестра за различные виды работ -80 баллов.

Шкала оценивания устного опроса

Критерии оценивания	Баллы
высокая активность на практических занятиях, содержание и изложение	10
материала отличается логичностью и смысловой завершенностью,	
студент показал владение материалом, умение четко, аргументировано и	
корректно отвечает на поставленные вопросы, отстаивать собственную	
точку зрения.	
участие в работе на практических занятиях, изложение материала носит	5
преимущественно описательный характер, студент показал достаточно	
уверенное владение материалом, однако недостаточное умение четко,	
аргументировано и корректно отвечает на поставленные вопросы и	
отстаивать собственную точку зрения.	
низкая активность на практических занятиях, студент показал	2
неуверенное владение материалом, неумение отстаивать собственную	
позицию и отвечать на вопросы.	
отсутствие активности на практических занятиях, студент показал	0
незнание материала по содержанию дисциплины.	

Шкала оценивания практической подготовки

Критерии оценивания	Баллы
высокая активность на практической подготовке, выполнены все	10
необходимые расчеты и задания сформированы выводы, даны	
рекомендации	
средняя активность на практической подготовке,	6
средняя активность на практической подготовке, выполнены не все	
необходимые расчеты и допущены ошибки, неточности в рекомендациях	
низкая активность на практической подготовке, не выполнены	0
необходимые расчеты и допущены ошибки, нет выводов и рекомендаций	

Шкала оценивания зачета

Критерии оценивания	Интервал
	оценивания
студент быстро и самостоятельно готовится к ответу; при ответе	16-20
полностью раскрывает сущность поставленного вопроса; способен	
проиллюстрировать свой ответ конкретными примерами;	
демонстрирует понимание проблемы и высокий уровень ориентировки	
в ней; формулирует свой ответ самостоятельно, используя лист с	
письменным вариантом ответа лишь как опору, структурирующую ход	
рассуждения	
студент самостоятельно готовится к ответу; при ответе раскрывает	11-15
основную сущность поставленного вопроса; демонстрирует понимание	
проблемы и достаточный уровень ориентировки в ней, при этом	
затрудняется в приведении конкретных примеров.	
студент готовится к ответу, прибегая к некоторой помощи; при ответе	6-10
не в полном объеме раскрывает сущность поставленного вопроса,	
однако, при этом, демонстрирует понимание проблемы.	
студент испытывает выраженные затруднения при подготовке к ответу,	0-5
пытается воспользоваться недопустимыми видами помощи; при ответе	
не раскрывает сущность поставленного вопроса; не ориентируется в	
рассматриваемой проблеме; оказываемая стимулирующая помощь и	
задаваемые уточняющие вопросы не способствуют более	
продуктивному ответу студента.	

Итоговая шкала оценивания результатов освоения дисциплины

Итоговая оценка по дисциплине выставляется по приведенной ниже шкале. При выставлении итоговой оценки преподавателем учитывается работа обучающегося в течение освоения дисциплины, а также оценка по промежуточной аттестации.

Баллы, полученные студентом по текущему	Оценка в традиционной системе
контролю и промежуточной аттестации	
41 - 100	Зачтено
0 - 40	Не зачтено