Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Дата подписания: 19.09.2025 1 МИНИСТЕРСТВ О ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Уникальн Медеральное учреждение высшего образования

6b5279da4e034bff679172803da**3% ГОУ**СРУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ»

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ)

Физико-математический факультет

Кафедра профессионального и технологического образования

Согласовано

деканом физико-математического

факультета

«21» <u>апреля</u> 2025 г. /Кулешова Ю.Д./

Рабочая программа дисциплины

Метаматериалы и новые композитные материалы

Направление подготовки

44.03.04 Профессиональное обучение (по отраслям)

Профиль:

Педагог профессионального образования

Квалификация

Бакалавр

Форма обучения

Очная

Согласовано учебно-методической комиссией Рекомендовано кафедрой

физико-математического факультета

Протокол от «16» any lette 2025 г. №

Председатель УМКом <u>Килешова ЮД.</u>/

профессионального и технологического образования

Протокол от « <u>9</u> » асущем 2025 г. № 6
Зав. кафедрой /Корецкий М.Г./

Москва 2025

Автор-составитель:

Корецкий М.Г., кандидат педагогических наук, доцент, заведующий кафедрой профессионального и технологического образования Государственного университета просвещения

Рабочая программа дисциплины «Метаматериалы и новые композитные материалы» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 44.03.04 Педагогическое образование (с двумя профилями подготовки), утвержденного приказом МИНОБРНАУКИ РОССИИ от 22.02.2018 № 124.

Дисциплина входит в модуль инженерной графики Блока 1 «Дисциплины(модули)» и является обязательной для изучения.

Год начала подготовки(по учебному плану) 2025

СОДЕРЖАНИЕ

1. Планируемые результаты обучения	4
2. Место дисциплины в структуре образовательной программы	4
3. Объем и содержание дисциплины	5
4. Учебно-методическое обеспечение самостоятельной работы обучающихся	6
5. Фонд оценочных средств для проведения текущей и промежуточной аттестации по дисциплине	9
6. Учебно-методическое и ресурсное обеспечение дисциплины	21
7. Методические указания по освоению дисциплины	22
8. Информационные технологии для осуществления образовательного процесса по дисциплине	23
9. Материально-техническое обеспечение дисциплины	23

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цели и задачи дисциплины

Цель дисциплины: приобретение студентами компетенции, уровень которой позволяет практически использовать знания метаматериалов и новых композитных материалов в профессиональной (производственной и научной) деятельности

Задачи дисциплины:

- 1. Изучение понятийного аппарата дисциплины метаматериалы и новые композитные материалы
- 2. Изучение основных теоретических положений дисциплины метаматериалы и новые композитные материалы
- 3. Приобретение навыков применения теоретических знаний дисциплины метаматериалы и новые композитные материалы для решения практических задач

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

ДПК-7. Способен разрабатывать и реализовывать образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в модуль инженерной графики Блока 1 «Дисциплины(модули)» и является обязательной для изучения..

Для освоения дисциплины «Метаматериалы и новые композитные материалы» студенты используют знания, умения и навыки, сформированные в процессе изучения на предыдущих уровнях образования следующих дисциплин: «Материаловедение», «Черчение», «Инженерная графика».

Освоение дисциплины «Метаматериалы и новые композитные материалы» может быть полезно для самосовершенствования в профессиональной деятельности, внедрения новых технологий в культурно-просветительскую, научную и образовательную сферу, последующего изучения таких дисциплин, как: «Детали машин», «Автоматизация процессов производства» прохождения производственной практики (эксплуатационная практика).

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Показатель объема дисциплины	Форма обучения
	Очная
Объем дисциплины в зачетных единицах	3
Объем дисциплины в часах	108
Контактная работа:	84,3

Лекции	24
Практические занятия	58
Консультации	2
Экзамен	0,3
Самостоятельная работа	14
Контроль	9,7

Форма промежуточной аттестации - экзамен в 6 семестре.

3.2. Содержание дисциплины

		Кол-во часов	
Наименование разделов(тем) дисциплины с кратким содержанием	Лек ции	Практич еские занятия	
		Общее кол-во	
1. «Основные свойства метаматериалов» Определение метаматериалов. Краткая история развития метаматериалов. Основные свойства метаматериалов: отрицательный показатель преломления. Метаматериалы с одним и двумя отрицательными параметрами и (single-negative, SNG и double-negative, DNG metamaterial, MTM). Свойства DNG сред: а) обратный закон Снеллиуса, б) обратное рассеяние в эффекте Черенкова, в) преодоление дифракционного предела, г) плоская линза. Экспериментальное подтверждение существования отрицательной рефракции	4	9	
2. «Диэлектрические метаматериалы с магнитными свойствами» Как создать изотропный метаматериал? Резонансные диэлектрические включения. Резонанс Ми. Метаматериал на решетке диэлектрических сфер: SNG и DNG метаматериалы. Кубические диэлектрические включения. Сочетание диэлектрических резонаторов и других компонентов регулярной структуры	4	9	
3. «Линии передачи (ЛП), подчиняющиеся правилу правой и левой руки»	4	10	

Уравнения линии передачи. Линии передачи, подчиняющиеся правилу правой руки (RH) и левой руки (LH). LC-эквивалент RH и LH линий передачи. Резонаторы на отрезках RH и LH ЛП. Условия резонанса. Резонанс нулевого порядка. Многомодовые резонаторы. СВЧ-устройства на комбинации отрезков RH и LH ЛП: фильтры, делители/сумматоры мощности, фазовращатели.		
4 «Метаматериалы с почти нулевой диэлектрической/магнитной проницаемостью» Эффективная магнитная проницаемость резонатора на расщепленных кольцевых резонаторах (split-ring resonator, SRR). Частотная зависимость эффективной магнитной проницаемости. МТМ с магнитной проницаемостью, близкой к нулюnear-zero (MNZ). Эффективная диэлектрическая проницаемость среды в виде решетки металлических проводов. Частотная зависимость эффективной диэлектрической проницаемости решетки проводов. МТМ с диэлектрической проницаемостью, близкой к нулюnear-zero (ENZ). Граничные условия для электромагнитной волны на границе раздела: свободное пространство - ENZ или MNZ МТМ. Условия для реализации ENZ и MNZ. Применение ENZ и MNZ метаматериалов.	4	10
5. «Высокоимпедансная поверхность» Как реализовать поверхность с заданными электромагнитнми параметрами? Электромагнитная волна на границе с полностью отражающим материалом. Частотно-избирательная поверхность (Frequency-selective surface, FSS). Поверхность с высоким значением сопротивления (Highimpedance surface, HIS). Частотная зависимость фазы коэффициента отражения FSS и HIS. Применение HIS в конструкциях антенн. Экранирование антенны. Управляемые высокоимпедансные поверхности	4	10
6. « Управляемые метаматериалы для ТГц приложений» ТГц спектр. Возможные области применения терагерцового излучения. Метаматериальные структуры ТГц метаматериалы на основе SRR. Обеспечение управляемости терагерцового МТМ электрическим, оптическим, магнитным воздействиями и контролем температуры. Планарные структуры на основе диэлектрических резонаторов и решетки параллельных проводов. Управление параметрами МТМ за счет изменения температуры или применения МЭМС-элементов. Управляемая планарная решетка металлических пластинок в жидкокристаллической среде. Решетка элементов металдиэлектрик-металл с пьезоэлектрическим кантилевером	4	10

Итого: 24 58	8
---------------------	---

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ CAMOCTOЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Темы для самостоятельн ого изучения	Изучаемые вопросы	Кол- во часов	Формы самостоят ельной работы	Методичес кое обеспечени е	Форма отчетности
«Диэлектричес кие метаматериал с магнитными свойствами»	Как создать изотропный метаматериал? Резонансные диэлектрические включения. Резонанс Ми. Метаматериал на решетке диэлектрических сфер: SNG и DNG метаматериалы. Кубические диэлектрические включения. Сочетание диэлектрических резонаторов и других компонентов регулярной структуры	2	Работа с литератур ой, Интернет	Список рекоменд. литературы; интернетресурсы	Тест, реферат, конспект
«Высокоимпед ансная поверхность»	Как реализовать поверхность с заданными электромагнитнми параметрами? Электромагнитная волна на границе с полностью отражающим материалом. Частотноизбирательная поверхность (Frequency-selective surface, FSS). Поверхность с высоким значением сопротивления (Highimpedance surface, HIS). Частотная зависимость	4	Работа с литератур ой, Интернет	Список рекоменд. литературы; интернетресурсы	Тест, реферат, конспект

	фазы коэффициента отражения FSS и HIS. Применение HIS в конструкциях антенн. Экранирование антенны. Управляемые высокоимпедансные поверхности				
«Управляемые метаматериал ы для ТГц приложений»	ТГц спектр. Возможные области применения терагерцового излучения. Метаматериальные структуры ТГц метаматериалы на основе SRR. Обеспечение управляемости терагерцового МТМ электрическим, оптическим, магнитным воздействиями и контролем температуры. Планарные структуры на основе диэлектрических резонаторов и решетки параллельных проводов. Управление параметрами МТМ за счет изменения температуры или применения МЭМС-элементов. Управляемая планарная решетка металлических пластинок в жидкокристаллической среде. Решетка элементов металдиэлектрик-металл с пьезоэлектрическим кантилевером	4	Работа с литератур ой, Интернет	Список рекоменд. литературы; интернетресурсы	Тест, реферат, конспект
«Фотонные кристаллы и	Введение в проблему фотонных кристаллов	4	Работа с литератур	Список рекоменд.	Тест, реферат,

ЕВG- структуры »	(ФК). Типы симметрии периодических структур. Одномерные (1D) и двумерные (2D) структуры ФК. Брэгговское отражение. Зоны Бриллюэна. Дисперсионные характеристики 1D и 2D структур ФК. СВЧ-применения фотонных кристаллов. Дефекты в ФК и волноведущие структуры. Электронная запрещенная зона (Electronic band gap, EBG). ЕВG-структуры для микроволновых приложений. Двумерные линзы на ФК.		ой, Интернет	литературы; интернет- ресурсы	конспект
Итого:		14			

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

В результате освоения дисциплины студент должен обладать следующими компетенциями:

Код и наименование компетенции	Этапы формирования компетенции	Формы учебной работы по формированию компетенций в процессе освоения образовательной программы
УК-1. Способен осуществлять поиск, критический анализ и	Когнитивный	Работа на учебных занятиях Самостоятельная работа
синтез информации, применять системный подход для решения	Операционный	Работа на учебных занятиях Самостоятельная работа
поставленных задач	Деятельностный	Работа на учебных занятиях Самостоятельная работа

ДПК-7. разрабатывать реализовывать	Способен и	Когнитивный	Работа на учебных занятиях Самостоятельная работа
образовательные программы, предметы, дисциплины инженерной	учебные курсы, (модули)	Операционный	Работа на учебных занятиях Самостоятельная работа
направленности		Деятельностный	Работа на учебных занятиях Самостоятельная работа

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

УК-1 - Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

Этапы форми ровани	Уровн и освое			Шкала оценивани я
я компет енции	ния состав ляющ ей компе тенци и	Описание показателей	Критерии оценивания	Выражение в баллах БРС
Когнит ивный	порог овый	Знание основ осуществления поиска, критического	Знание основ осуществления поиска, критического анализа и синтеза информации, применения системного подход для решения поставленных задач.	41-60
	продв инуты й	анализа и синтеза информации, применять системный подход для решения поставленных задач	Понимает и объясняет сущность осуществления поиска, критического анализа и синтеза информации, применять системный подход для решения поставленных задач	81 - 100
Опера ционн ый	порог овый	Умение осуществлять поиск, критический анализ и синтез информации,	Удовлетворительный уровень освоения умения осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач.	41-60

	продв инуты й	применять системный подход для решения поставленных задач	Высокий уровень сформированности умения осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	81 - 100
Деятел ьностн ый	порог овый	Владение способностью осуществлять поиск,	Фрагментарное владение способностью осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	41-60
	продв инуты й	критический анализ и синтез информации, применять системный подход для решения поставленных задач	Владение способностью осуществлять и оптимизировать поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	81 - 100

ДПК-7. Способен разрабатывать и реализовывать образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.

Этапы форми ровани я компет енции	Уровн и освое ния состав ляющ ей компе тенци и	Описание показателей	Критерии оценивания	Шкала оценивани я Выражение в баллах БРС
Когнит ивный	порог	Знание основ разработки и реализации образовательных программ,	Знание основ разработки и реализации образовательных программ, учебных предметов, курсов, дисциплин (модулей) инженерной направленности.	41-60
	продв инуты й	учебных предметов, курсов, дисциплин (модулей) инженерной направленности.	Понимает и объясняет сущность разработки и реализации образовательных программ, учебных предметов, курсов, дисциплин (модулей) инженерной направленности.	81 - 100
Опера ционн ый	порог овый	Умение разрабатывать и реализовывать образовательные	Удовлетворительный уровень освоения умения разработки и реализации образовательных программ, учебных предметов, курсов, дисциплин (модулей)	41-60

		программы,	инженерной направленности	
	продв инуты й	учебные предметы, курсы, дисциплины (модули) инженерной направленности.	Высокий уровень сформированности умения разработки и реализации образовательных программ, учебных предметов, курсов, дисциплин (модулей) инженерной направленности	81 - 100
Деятел ьностн ый	порог овый	Владение способностью разрабатывать и реализовывать	Фрагментарное владение способностью разрабатывать и реализовывать образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.	41-60
	продв инуты й	образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.	Владение способностью разрабатывать и реализовывать образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.	81 - 100

Описание шкал оценивания

Шкала оценивания конспектов

Конспекты оцениваются по шкале от 0 до 1 балла. Максимальное количество баллов -6 (6 конспектов по 1 баллу)

Показатель	Балл
Выполнено	1 балл
Не выполнено	0 баллов

Шкала оценивания тестирования

Написание теста оценивается по шкале от 1 до 32 баллов. Освоение компетенций зависит от результата написания теста:

компетенции считаются освоенными на высоком уровне (оценка отлично)	23-32 баллов (80-100% правильных ответов)
компетенции считаются освоенными на базовом уровне (оценка хорошо);	15-19 баллов (70-75 % правильных ответов)
компетенции считаются освоенными на удовлетворительном уровне (оценка удовлетворительно);	7-11 - баллов (50-65 % правильных ответов)
компетенции считаются не освоенными (оценка неудовлетворительно).	1-3 баллов (менее 50 % правильных ответов)

Шкала оценивания реферата

Критерии оценивания	Баллы
Свободное изложение и владение материалом. Полное усвоение сути проблемы, достаточно правильное изложение теории и методологии, анализ фактического материала и четкое изложение итоговых результатов, грамотное изложение текста.	26-32 баллов
Достаточное усвоение материала. Суть проблемы раскрыта, аналитические материалы, в основном, представлены; описание не содержит грубых ошибок; основные выводы изложены и, в основном, осмыслены.	11-25 баллов
Поверхностное усвоение теоретического материала. Недостаточный анализ анализируемого материала. Суть проблемы изложена нечетко; в использовании понятийного аппарата встречаются несущественные ошибки;	7-10 баллов
Неудовлетворительное усвоение теоретического и фактического материала по проблемам научного исследования. Суть проблемы и выводы изложены плохо; в использовании понятийного аппарата встречаются грубые ошибки; основные выводы изложены и осмыслены плохо.	0-6 баллов

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерные темы тестирования

- 1. Что такое метаматериалы?
- а) Искусственно созданные материалы с необычными свойствами
- b) Естественные материалы, обладающие особыми свойствами
- с) Смеси различных материалов
- 2. Какие особые свойства имеют метаматериалы?
- а) Отрицательный показатель преломления света
- b) Низкая плотность
- с) Все вышеперечисленное
- 3. Какие основные области применения метаматериалов?
- а) Технологии рассеивания света
- b) Радиочастотная и микроволновая техника
- с) Все вышеперечисленное
- 4. Каким образом метаматериалы обеспечивают негативный показатель преломления света?
 - а) Использование множества микроскопических отверстий
 - b) Применение структурных элементов наномасштабного размера
 - с) Все вышеперечисленное
 - 5. Какие новые свойства обеспечивают композитные материалы?
 - а) Высокая прочность
 - b) Малый вес

- с) Все вышеперечисленное
- 6. Что такое композитные материалы?
- а) Материалы, состоящие из разнородных компонентов
- b) Материалы, полученные путем смешивания различных элементов
- с) Материалы, обладающие уникальными свойствами
- 7. Какие типы композитных материалов существуют?
- а) Стеклопластик
- b) Карбоновое волокно
- с) Все вышеперечисленное
- 8. Какой компонент обеспечивает прочность у композитных материалов на основе карбонового волокна?
 - а) Полимерная матрица
 - b) Волокна из карбонового материала
 - с) Все вышеперечисленное
- 9. Какие преимущества предлагают композитные материалы перед традиционными материалами, такими как сталь или алюминий?
 - а) Высокая прочность при малом весе
 - b) Отличная коррозионная стойкость
 - с) Возможность гибкой формы и дизайна
 - d) Все вышеперечисленное
 - 10. Какая роль углеродного волокна в композитных материалах?
 - а) Обеспечение прочности
 - b) Улучшение электрической проводимости
 - с) Все вышеперечисленное
- 11. Какой компонент придает композитным материалам стеклопластиковую структуру?
 - а) Стекловолокно
 - b) Полиэстерная смола
 - с) Все вышеперечисленное
 - 12. Какие сложные формы могут получать композитные материалы?
 - а) Тонкостенные и изящные детали
 - b) Детали с внутренней полостью
 - с) Все вышеперечисленное
 - 13. Как влияет структура композитных материалов на их свойства?
 - а) Ориентация волокон
 - b) Количество слоев
 - с) Все вышеперечисленное
- 14. Какие отрасли промышленности наиболее активно используют композитные материалы?
 - а) Авиационная промышленность
 - b) Автомобильная промышленность
 - с) Все вышеперечисленное

- 15. Каковы вызовы и перспективы развития метаматериалов и композитных материалов?
 - а) Улучшение технологий производства
 - b) Расширение области применения
 - с) Все вышеперечисленное

Примерная тематика рефератов:

- . Введение в метаматериалы: определение, свойства и области применения.
- 2. История развития метаматериалов: от понятия до практического применения.
- 3. Основные типы метаматериалов и их свойства.
- 4. Роль метаматериалов в области фотоники и оптики.
- 5. Использование метаматериалов в разработке невидимости и скрытых устройств.
- 6. Применение метаматериалов в различных областях электромагнитной совместимости.
- 7. Метаматериалы и развитие беспроводной коммуникации: технологии и перспективы.
- 8. Метаматериалы и контроль звука: от шумоподавления до акустического маскирования.
- 9. Биомиметика и метаматериалы: использование природных принципов в технологиях.
- 10. Роль метаматериалов в разработке ультрачувствительных сенсоров и датчиков.
- 11. Использование метаматериалов в энергетике: солнечные батареи и теплоизоляционные материалы.
- 12. Метаматериалы в медицине: применение в области диагностики и терапии.
- 13. Экологические и устойчивые аспекты производства метаматериалов.
- 14. Нанотехнологии и новые композитные материалы: преимущества и применение.
- 15. Основные виды композитных материалов и их структура.
- 16. Влияние композитных материалов на вес, прочность и гибкость изделий.
- 17. Применение композитных материалов в авиации и космической промышленности.
- 18. Композитные материалы в машиностроении: от мотоциклов до автомобилей.
- 19. Роль композитных материалов в строительстве: снижение веса и повышение энергоэффективности.
- 20. Экологические и устойчивые аспекты производства композитных материалов.

Примерные вопросы к экзамену:

- 1. Что такое метаматериалы и новые композитные материалы?
- 2. Какие особенные свойства имеют метаматериалы?
- 3. Что такое отрицательный показатель преломления света и как его достигают с помощью метаматериалов?
- 4. Какие методы используются для создания метаматериалов?
- 5. Какие области применения метаматериалов существуют?
- 6. Что такое композитные материалы и чем они отличаются от традиционных материалов?
- 7. Какие свойства имеют композитные материалы, которые делают их привлекательными для использования?
- 8. Какие типы композитных материалов существуют и для каких целей они используются?
- 9. Какие компоненты образуют композитные материалы?
- 10. Какие технологии используются для создания композитных материалов?
- 11. Какие преимущества приносит использование композитных материалов в различных отраслях промышленности?
- 12. Какие вызовы и ограничения существуют в области применения метаматериалов?
- 13. Какие вызовы и ограничения существуют в области применения композитных материалов?
- 14. Какие новые технологии или разработки связаны с метаматериалами?
- 15. Какие новые технологии или разработки связаны с композитными материалами?
- 16. Какие перспективы развития метаматериалов в будущем?
- 17. Какие перспективы развития композитных материалов в будущем?
- 18. Как композитные материалы могут быть применены в медицине?
- 19. Как метаматериалы могут быть применены в электронике и связи?
- 20. Какую роль играют метаматериалы и композитные материалы в области энергетики?

- 21. Какие особое применение имеют метаматериалы в области активной оптики и фотоники?
- 22. Как метаматериалы могут быть применены в области защиты от электромагнитных волн?
- 23. Как композитные материалы могут быть использованы в авиации и космической промышленности?
- 24. Какие технологии производства композитных материалов существуют?
- 25. Как композитные материалы могут быть применены в автомобилестроении?
- 26. Какую роль играют метаматериалы и композитные материалы в строительной отрасли?
- 27. Какие особенности процесса производства метаматериалов?
- 28. Какие особенности процесса производства композитных материалов?
- 29. Какую роль играют нанотехнологии в создании метаматериалов и композитных материалов?
- 30. Как метаматериалы и композитные материалы могут быть использованы в робототехнике и автоматизации производства?
- 31. Какие основные ограничения и сложности существуют при проектировании и производстве метаматериалов?
- 32. Какие основные ограничения и сложности существуют при проектировании и производстве композитных материалов?
- 33. Какие экологические аспекты и преимущества связаны с использованием метаматериалов?
- 34. Какие экологические аспекты и преимущества связаны с использованием композитных материалов?
- 35. Какие методы и технологии испытания и анализа применяются для метаматериалов?
- 36. Какие методы и технологии испытания и анализа применяются для композитных материалов?
- 37. Как метаматериалы и композитные материалы влияют на экономику и индустрию?
- 38. Какие инновационные исследования и проекты связаны с метаматериалами?
- 39. Какие инновационные исследования и проекты связаны с композитными материалами?
- 40. Как метаматериалы и композитные материалы способствуют прогрессу в науке и технологиях?

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Требования к тестированию

Предлагаемые тестовые задания предназначены для повторения пройденного материала и закрепления знаний, главная цель тестов - систематизировать знания студентов. Во всех тестовых заданиях необходимо выбрать правильный из предлагаемых ответов, завершить определение либо вставить недостающий термин. Текущий контроль знаний в виде тестирования, проводится в рамках практического занятия.

Написание теста оценивается по шкале от 1 до 32 баллов. Освоение компетенций зависит от результата написания теста.

Реферат на заданную тему

При подготовке сообщения студент должен учитывать следующее:

- 1. Необходимо оценить время, требуемое для его написания, оформления (как правило, в форме презентации), подготовки к выступлению, после чего составить план работы над сообщением.
- 2. Для написания сообщения следует сначала подобрать материал по теме сообщения (используя учебно-методическое и ресурсное обеспечение дисциплины).
- 4. После изучения материала составляется план сообщения, который следует обсудить с преподавателем.
- 6. По составленному плану написать текст сообщения, следуя общепринятой структуре (вводная часть, цель и задачи сообщения, содержательная часть, заключение).

- 7. Во вводной части сообщения необходимо сформулировать собственное понимание актуальности выбранной темы, сформулировать цель и задачи сообщения. В содержательной части следует изложить сущность проблемы, привести разные точки зрения, изложенные у разных авторов. В заключении необходимо подвести итоги по рассмотрению темы сообщения, показать перспективы решения проблемы.
 - 8. Подготовить иллюстрационный материал к презентации.
- 10. Подготовиться к выступлению и к ответам на возможные вопросы в ходе дискуссии. При подготовке необходимо учитывать время, отпущенное на доклад (5-10 минут).

Текущий контроль знаний в виде сообщения на заданную тему на коллоквиуме, проводится в рамках практического занятия.

Требования по написанию конспекта.

Конспект — это краткая письменная фиксация основных фактических данных, идей, понятий и определений, устно излагаемых преподавателем или представленных в литературном источнике. Такой вид аналитической обработки материала должен отражать логическую связь частей прослушанной или прочитанной информации. Результат конспектирования — хорошо структурированная запись, позволяющая обучающемуся с течением времени без труда и в полном объеме восстановить в памяти нужные сведения.

Требования к экзамену

Промежуточная аттестация по дисциплине определяет степень усвоения знаний, умений и навыков студентов по учебному материалу семестра, проводится в виде экзамена.

К экзамену допускаются студенты, успешно выполнившие все задания на практических занятиях и по самостоятельной работе.

Экзамену по дисциплине проводится включает в себя отчет по выполнению всех практических/лабораторных заданий по темам и заданий по самостоятельной работе. На экзамене по дисциплине студент должен ответить на теоретические вопросы.

Выбор формы и порядок проведения экзамена осуществляется кафедрой. Оценка знаний студента в процессе зачета осуществляется исходя из следующих критериев:

- а) умение сформулировать определения понятий, данных в вопросе, с использованием специальной терминологии, показать связи между понятиями;
- б) способность дать развернутый ответ на поставленный вопрос с соблюдением логики изложения материала; проанализировать и сопоставить различные точки зрения на поставленную проблему;
 - в) умение аргументировать собственную точку зрения.

<u>При оценке студента на экзамене преподаватель руководствуется следующими критериями:</u>

Шкала оценивания экзамена

- 30-25 баллов плановые практические задания выполнены в полном объеме; приведен полный, исчерпывающе правильный ответ и даны исчерпывающие верные рассуждения; устный ответ на вопросы констатирует прочное усвоение знаний и умений.
- 24-18 баллов плановые практические задания выполнены в полном объеме; поставленные задачи решены правильно, однако рассуждения, приводящие к ответу, представлены не в полном объеме, или в них содержатся логические недочеты; устный ответ на вопросы содержит неточности, незначительные погрешности в изложении теории.
- 17-9 баллов плановые практические задания выполнены, даны правильные ответы, но в некоторых из них допущены ошибки; устный ответ на вопросы показывает отдельные пробелы в знаниях студента.

- 8-5 балла плановые практические задания выполнены не в полном объеме; устный ответ на вопросы содержит грубые ошибки в изложении теории, которые показывают значительные пробелы в знаниях студента; более половины вопросов оказались без ответов; знания и умения не соответствуют требованиям программы.
- 4-0 баллов не выполнены плановые практические задания, студент объявляет о непонимании материала дисциплины, о полном незнании ответа на поставленные теоретические вопросы

Соотношение вида работ и количества баллов в рамках процедуры оценивания

Вид работы	количество баллов	
Конспект	до 6 баллов	
Тестирование	до 32 балла	
Реферат	до 32 балла	
Экзамен	до 30 баллов	

Итоговая шкала оценивания по дисциплине

При выставлении итоговой оценки преподавателем учитывается работа студента в течение всего срока освоения дисциплины, а также баллы, полученные на промежуточной аттестации.

Цифровое выражение	Выражение в баллах БРС	Словесное выражение	Описание оценки в требованиях к уровню и объему компетенций
5	81-100	Отлично (зачтено)	Освоен продвинутый уровень всех составляющих компетенций:, УК-1, ДПК-7
4	61-80	Хорошо (зачтено)	Освоен повышенный уровень всех составляющих компетенций: УК-1, ДПК-7
3	41-60	Удовлетворительно (зачтено)	Освоен базовый уровень всех составляющих компетенций: УК-1, ДПК-7
2	до 40	Неудовлетворительно (не зачтено)	Не освоен базовый уровень всех составляющих компетенций:УК-1, ДПК-7

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная литература

- 1. Селиванов, В. Ф. Новые конструкционные материалы в машиностроении : учебное пособие / В. Ф. Селиванов, В. В. Ожерельев, В. А. Юрьева. Воронеж : Воронежский государственный технический университет, ЭБС АСВ, 2023. 103 с. ISBN 978-5-7731-1090-3. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/131021.html
- 2. Жилкин, В. А. Моделирование и расчет изделий из анизотропных и композитных материалов в MSC Patran-Nastran: учебное пособие / В. А. Жилкин. Санкт-Петербург: Проспект Науки, 2024. 311 с. ISBN 978-5-906109-88-0. Текст:

- электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/138607.html
- 3. Новые материалы: биологически активные гиперразветвленные полимеры и их металлокомплексы: монография / М. П. Кутырева, С. С. Бабкина, Т. К. Атанасян [и др.]. 2-е изд. Москва: Московский педагогический государственный университет, 2024. 136 с. ISBN 978-5-4263-0179-5. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/145803.html
- 4. Казаковская, Т. В. Коррозия металлических материалов : пособие по курсу «Коррозия специальных материалов» / Т. В. Казаковская. Саров : Российский федеральный ядерный центр ВНИИЭФ, 2024. 79 с. ISBN 978-5-9515-0576-7. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/148077.html

6.2. Дополнительная литература

- 1. Метаматериалы в радиоэлектронике: от исследований к разработкам / А. Н. Дементьев, А. О. Жуков, В. К. Ильков, В. Р. Скрынский; под редакцией П. П. Мальцева. Москва: Техносфера, 2023. 248 с. ISBN 978-5-94836-674-6. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/145868.html
- 2. Применение современных полимерных композиционных материалов в строительстве : учебное пособие для обучающихся по направлению подготовки 08.04.01 Строительство и аспирантов по научным специальностям 2.1.5 Строительные материалы и изделия, 2.6.17 Материаловедение / В. А. Ушков, А. Н. Шувалов, О. А. Корнев, В. А. Какуша. Москва : МИСИ-МГСУ, ЭБС АСВ, 2023. 136 с. ISBN 978-5-7264-3358-5. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/142184.html

6.3. Интернет-ресурсы

- 1. http://mon.gov.ru Министерство образования и науки РФ;
- 2. http://www.fasi.gov.ru Федеральное агентство по науке и образованию;
- 3. http://www.edu.ru Федеральный портал «Российское образование»:
- 4. http://www.garant.ru информационно-правовой портал «Гарант»
- 5. http://www.school.edu.ru Российский общеобразовательный портал;
- 6. http://www.openet.edu.ru Российский портал открытого образования;
- 7. http://www.ict.edu.ru портал по информационно-коммуникационным технологиям в образовании;
- 8. http://pedagogic.ru педагогическая библиотека;
- 9. http://www.pedpro.ru журнал «Педагогика»;
- 10. http://www.informika.ru/about/informatization_pub/about/276 научно-методический журнал «Информатизация образования и науки»;
- 11. http://www.hetoday.org журнал «Высшее образование сегодня».
- 12. http://www.znanie.org/ Общество «Знание» России
- 13. http://www.gpntb.ru Государственная публичная научно-техническая библиотека.
- 14. http://www.rsl.ru Российская национальная библиотека.
- 15. http://www.gpntb.ru Публичная электронная библиотека.
- 16. http://www.znanium.com/ Электронно-библиотечная система
- 17. http://www.biblioclub.ru/ Университетская библиотека онлайн
- 18. http://www.elibrary.ru Научная электронная библиотека

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

1.Методические рекомендации по организации и выполнению самостоятельной работы студентов

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows MicrosoftOffice KasperskyEndpointSecurity

Информационные справочные системы:

Система ГАРАНТ Система «Консультант Плюс»

Профессиональные базы данных:

<u> fgosvo.ru – Портал Федеральных государственных образовательных стандартов высшего образования</u>
<u> pravo.gov.ru - Официальный интернет-портал правовой информации</u>
<u> www.edu.ru – Федеральный портал Российское образование</u>

Свободно распространяемое программное обеспечение, в том числе отечественного производства:

ОМС Плеер (для воспроизведения Электронных Учебных Модулей), 7-zip, Google Chrome

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения занятий лекционного и семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные учебной мебелью, доской, демонстрационным оборудованием;
- помещения для самостоятельной работы, укомплектованные учебной мебелью, персональными компьютерами с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду ГУП;
- помещения для хранения и профилактического обслуживания учебного оборудования, укомплектованные мебелью (шкафы/стеллажи), наборами демонстрационного оборудования и учебно-наглядными пособиями;

Практические занятия - комплект учебной мебели, персональный компьютер с подключением к сети Интернет, далее из РПД спец. оборудование.