Документ подписан простой электронной подписью Информация о владельце:
ФИО: Наумова Наталия Александиринги СТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Должность Ректор Делеральное государственное автономное образовательное учреждение высшего образования Дата подписания. 08.09.2025 12:01.01 ПРОСУДАРСТ ВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ» Уникальный программный ключ: «ГОСУДАРСТ ВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ» 6b5279da4e034bff679172803da5b7b559fc69e2

Кафедра вычислительной математики и информационных технологий

УТВЕРЖДЕН на заседании кафедры Протокол от «_19_»_марта 2025 г., №_10_ Зав. кафедрой _____/Шевчук М.В./

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине Теория алгоритмов

Направление подготовки 44.03.01 Педагогическое образование Профиль: Информатика

Содержание

1.Перечень компетенций с указанием этапов их формирования в процессе освоения
образовательной программы
2. Описание показателей и критериев оценивания компетенций на различных этапах
их формирования, описание шкал оценивания
3. Контрольные задания или иные материалы, необходимые для оценки знаний,
умений, навыков и (или) опыта деятельности, характеризующих этапы
формирования компетенций в процессе освоения образовательной программы5
4. Методические материалы, определяющие процедуры оценивания знаний, умений,
навыков и (или) опыта деятельности, характеризующих этапы формирования
компетенций12

1.Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код и наименование компетенции	Этапы формирования
ПК-1 «Способен осуществлять поиск, критический	1.Работа на учебных занятиях
анализ и синтез информации, применять системный	2.Самостоятельная работа
подход для решения поставленных задач»	

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оценива	Уровень	Этапы	Описание показателей	Критерии	Шкала
емые	сформир	формирова		оцениван	оцениван
компете	ованнос	ния		ия	ия
нции	ТИ				
ПК-1	Порогов	1.Работа на	Знать:	Тестирова	Шкала
	ый	учебных	- современные концепции, теории,	ние,	оцениван
		занятиях	законы и методы в области	конспект,	ия
		2.Самостоя	информатики и перспективные	практичес	тестирова
		тельная	направления развития современной	кие	ния
		работа	науки;	работы	Шкала
			- принципы поиска информации,		оцениван
			критического анализа и синтеза		ия
			информации, методики системного		конспект
			подхода для решения поставленных		a
			задач		Шкала
			Уметь:		оцениван
			- ясно и логично излагать полученные		ия
			базовые знания;		практиче
			- строить модели реальных объектов		ских
			или процессов;		работ
			- применять методики поиска, сбора,		
			обработки информации, системный		
			подход для решения поставленных		
			задач и осуществлять критический		
			анализ и синтез информации,		
			полученной из актуальных источников.		
	Продвин	1.Работа на	Знать:	Тестирова	Шкала
	утый	учебных	- современные концепции, теории,	ние,	оцениван
		занятиях	законы и методы в области	конспект,	ия

2.Самостоя	информатики и перспективные	практичес	тестирова
тельная	направления развития современной	кие	ния
работа	науки;	работы	Шкала
_	- принципы поиска информации,		оцениван
	критического анализа и синтеза		ия
	информации, методики системного		конспект
	подхода для решения поставленных		a
	задач		Шкала
	Уметь:		оцениван
	- ясно и логично излагать полученные		ия
	базовые знания;		практиче
	- строить модели реальных объектов		ских
	или процессов;		работ
	- применять методики поиска, сбора,		
	обработки информации, системный		
	подход для решения поставленных		
	задач и осуществлять критический		
	анализ и синтез информации,		
	полученной из актуальных источников.		
	Владеть:		
	- способностью к логическому		
	рассуждению;		
	- моделированием для построения		
	объектов и процессов, определения или		
	предсказания их свойств;		
	- навыками поиска, критического		
	анализа и синтеза информации;		
	- способностью применять системный		
	подход для решения поставленных		
	задач.		

Описание шкал оценивания

Шкала оценивания лабораторных работ.

Критерий оценивания	Баллы
Аккуратность и полнота выполнения всех пунктов задания	0-6
Понимание логики выполнения задания и значения полученных результатов	0-4
Максимальное количество баллов	10

Шкала оценивания конспекта.

Критерии оценивания	Баллы
Текст конспекта логически выстроен и точно изложен, ясен весь ход	0-2
рассуждения	

Даны ответы на все поставленные вопросы, изложены научным языком, с	0-3
применением терминологии	
Максимальное количество баллов	5

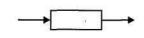
Шкала оценивания теста.

Критерии оценивания	Балл
Выполнены правильно не менее 80% тестовых заданий	16-20
Выполнены правильно от 60% до 79% тестовых заданий	12-15
Выполнены правильно от 50% до 59% тестовых заданий	10-11
Выполнены правильно менее 50% тестовых заданий	9
Максимальное количество баллов	20

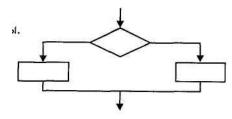
3. Контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

ПК-1 «Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач»

Знать:


- современные концепции, теории, законы и методы в области информатики и перспективные направления развития современной науки;
- принципы поиска информации, критического анализа и синтеза информации, методики системного подхода для решения поставленных задач.

Задания, необходимые для оценивания сформированности ПК-1 на пороговом уровне


Перечень вопросов для тестовых заданий:

- 1. Как называется графическое представление алгоритма:
 - 1) последовательность формул;
 - 2) блок-схема;
 - 3) таблица;
 - 4) словесное описание?
- 2. На рисунке представлена часть блок-схемы. Как называется такая вершина:
 - 1) предикатная;

- 2) объединяющая;
- 3) функциональная;
- 4) сквозная?

- 3. На рисунке представлен фрагмент блок-схемы. Как он называется?
 - 1) альтернатива;
 - 2) композиция;
 - 3) цикл с предусловием;
 - 4) итерация?

Ключи правильных ответов: 1-2), 2-3), 3-1).

Задания, необходимые для оценивания сформированности ПК-1 на продвинутом уровне

Перечень вопросов для тестовых заданий:

- 4. Команда машины Поста имеет структуру *п Кт*, где:
- 1) n действие, выполняемое головкой; K номер следующей команды, подлежащей выполнению; m порядковый номер команды;
- n порядковый номер команды; K действие, выполняемое головкой; m номер следующей команды, подлежащей выполнению;
- 3) n порядковый номер команды; K номер следующей команды, подлежащей выполнению; m действие, выполняемое головкой;
- 4) n порядковый номер команды; K действие, выполняемое головкой; m номер клетки, с которой данную команду надо произвести.
- 5. В машине Поста останов будет результативным:
- 1) при выполнении недопустимой команды;
- 2) если машина не останавливается никогда;
- 3) если результат выполнения программы такой, какой и ожидался;
- 6. В машине Тьюринга предписание S для лентопротяжного механизма означает:
- 1) переместить ленту вправо;
- 2) переместить ленту влево;
- 3) остановить машину;
- 4) занести в ячейку символ.

Перечень лабораторных работ **Лабораторная работа № 1**. Машина Тьюринга.

Цель: разработать программу для машины Тьюринга, которая каждый второй символ «1» заменяет на «0».

На ленте машины Тьюринга содержится последовательность символов «1». Замена начинается с правого конца последовательности. Автомат в состоянии q1 обозревает один из символов указанной последовательности. Описать работу программы.

Лабораторная работа № 2. Машина Поста.

Цель: Разработать программу для машины Поста, которая увеличивает длину массива на 2 метки.

На ленте задан массив меток, каретка находится над одной из ячеек самого массива.

Уметь:

- ясно и логично излагать полученные базовые знания;
- строить модели реальных объектов или процессов;
- применять методики поиска, сбора, обработки информации, системный подход для решения поставленных задач и осуществлять критический анализ и синтез информации, полученной из актуальных источников.

Задания, необходимые для оценивания сформированности ПК-1 на пороговом уровне

Перечень вопросов для тестовых заданий

- 7. Свойство алгоритма записываться в виде упорядоченной совокупности отделенных друг от друга предписаний (директив):
- 1) понятность;
- 2) определенность;
- 3) дискретность;
- 4) массовость.
- 8. Рекурсия в алгоритме будет прямой, когда:
- 1) рекурсивный вызов данного алгоритма происходит из вспомогательного алгоритма, к которому в данном алгоритме имеется обращение;

- 2) порядок следования команд определяется в зависимости от результатов проверки некоторых условий;
- 3) команда обращения алгоритма к самому себе находится в самом алгоритме;
- 4) один вызов алгоритма прямо следует за другим.

Ключи правильных ответов: 7-3), 8-3).

Задания, необходимые для оценивания сформированности ПК-1 на продвинутом уровне

Перечень вопросов для тестовых заданий

- 9. В ассоциативном счислении два слова называются смежными:
- 1) если одно из них может быть преобразовано в другое применением подстановок;
- 2) если одно из них может быть преобразовано в другое однократным применением допустимой подстановки;
- 3) когда существует цепочка от одного слова к другому и обратно;
- 4) когда они дедуктивны.
- 10. Способ композиции нормальных алгоритмов будет суперпозицией, если:
- 1) выходное слово первого алгоритма является входным для второго;
- 2) существует алгоритм С, преобразующий любое слово р, содержащееся і пересечении областей определения алгоритмов А и В;
- 3) алгоритм D будет суперпозицией трех алгоритмов ABC, причем область определения D является пересечением областей определения алгоритмов A B и C, а для любого слова p из этого пересечения D(p) = A(p), если C(p) = e, D(p) = B(p), если C(p) = e, где e пустая строка;
- 4) существует алгоритм C, являющийся суперпозицией алгоритмов A и Д такой, что для любого входного слова р $C\{p\}$ получается в результате последовательного многократного применения алгоритма A до тех пор, пока не получится слово, преобразуемое алгоритмом B.
- 11. Свойство алгоритма записываться только директивами однозначно и одинаково интерпретируемыми разными исполнителями:
- 1) детерминированность;
- 2) результативность;
- 3) дискретность;
- 4) понятность.

Ключи правильных ответов: 9-2), 10-1), 11-4)

Перечень лабораторных работ

Лабораторная работа № 3. Машина Тьюринга.

Цель: разработать машину Тьюринга, которая увеличивала бы заданное число, записанное в восьмеричной системе счисления, не единицу. Машина в состоянии q1 обозревает произвольную цифру входного слова. Описать работу программы.

Лабораторная работа № 4. Алгорифм Маркова.

Цель: построить алгорифм Маркова, который в слове над алфавитом A={a,b,c,d} произвел бы замену вхождения подслова bb на dd и удалил бы все вхождения символа с.

Владеть:

- способностью к логическому рассуждению;
- моделированием для построения объектов и процессов, определения или предсказания их свойств;
- навыками поиска, критического анализа и синтеза информации;
- способностью применять системный подход для решения поставленных задач.

Задания, необходимые для оценивания сформированности ПК-1 на продвинутом уровне

Перечень вопросов для тестовых заданий

- 12. Рекурсия в алгоритме будет прямой, когда:
- 1) рекурсивный вызов данного алгоритма происходит из вспомогательного алгоритма, к которому в данном алгоритме имеется обращение;
- 2) порядок следования команд определяется в зависимости от результатов проверки некоторых условий;
- 3) команда обращения алгоритма к самому себе находится в самом алгоритме;
- 4) один вызов алгоритма прямо следует за другим.
 - 13. В машине Тьюринга предписание L для лентопротяжного механизма означает:

- 1) переместить ленту вправо;
- 2) переместить ленту влево;
- 3) остановить машину;
- 4) занести в ячейку символ.
- 14. Способ композиции нормальных алгоритмов будет итерацией, если:
- 1) выходное слово первого алгоритма является входным для второго;
- 2) существует алгоритм С, преобразующий любое слово р, содержащееся в пересечении областей определения алгоритмов А и В;
- 3) алгоритм D будет суперпозицией трех алгоритмов ABC, причем область определения D является пересечением областей определения алгоритмов A B к C, а для любого слова p из этого пересечения D{p)= A(p), если C(p) = e, D(p) B(p), если C(p) = e, где e пустая строка;
- 4) существует алгоритм C, являющийся суперпозицией алгоритмов A и B, такой, что для любого входного слова р C(р) получается в результате последовательного многократного применения алгоритма A до тех пор, пока не получится слово, преобразуемое алгоритмом B.

Ключи правильных ответов: 12-3), 13-2), 14-4)

Перечень лабораторных работ

Лабораторная работа № 5. Машина Поста.

Цель: разработать машину Поста, которая из двух массивов меток, находящихся на некотором расстоянии, создавала бы один массив.

Каретка находится над крайней левой меткой первого массива.

Лабораторная работа № 6. Алгорифм Маркова.

Цель: построить алгорифм Маркова, который в слово над $A=\{0,1,2,3\}$ (неотрицательное целое число в четверичная система счисления) переводил бы в двоичную систему счисления.

Промежуточная аттестация

ПК-1 «Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач» Знать:

- современные концепции, теории, законы и методы в области информатики и перспективные направления развития современной науки;
- принципы поиска информации, критического анализа и синтеза информации, методики системного подхода для решения поставленных задач Уметь:
- ясно и логично излагать полученные базовые знания;
- строить модели реальных объектов или процессов;
- применять методики поиска, сбора, обработки информации, системный подход для решения поставленных задач и осуществлять критический анализ и синтез информации, полученной из актуальных зарубежных источников. Владеть:
- способностью к логическому рассуждению;
- моделированием для построения объектов и процессов, определения или предсказания их свойств;
- навыками поиска, критического анализа и синтеза информации; способностью применять системный подход для решения поставленных задач.

Перечень вопросов для экзамена

- 1. Неформальное понятие алгоритма. Свойства алгоритма. Алгоритмы в жизни. Алгоритмы в математике. Алгоритм Евклида. Примеры алгоритмов.
- 2. Конструктивные объекты. Алгоритмический процесс. Вычислимые функции. Примеры. Сигнализирующее множество.
- 3. Определение машины Тьюринга. Применение машины Тьюринга к словам. Построение алгоритмов для машины Тьюринга.
- 4. Понятие композиции машин Тьюринга. Применение композиций машин Тьюринга для их конструирования.
- 5. Вычислимые по Тьюрингу функции.
- 6. Алгоритмы, функции и машины Тьюринга.
- 7. Вычислимость функций на машине Тьюринга.
- 8. Вычисление сложных функций на машинах Тьюринга.
- 9. Тезис Тьюринга (основная гипотеза теории алгоритмов).
- 10. Машины Тьюринга и современные ЭВМ.
- 11. Происхождение рекурсивных функций. Простейшие функции.
- 12. Тезис Черча (основная гипотеза теории рекурсивных функций).
- 13. Вычислимость по Тьюрингу примитивно рекурсивных функций.
- 14. Частично рекурсивные функции и функции, вычислимые по Тьюрингу.
- 15. Марковские подстановки. Нормальные алгоритмы и их применение к словам. Нормально вычислимые функции. Принцип нормализации Маркова.

- 16. Совпадение класса всех нормально вычислимых функций с классом всех функций, вычислимых по Тьюрингу.
- 17. Теорема Поста.
- 18. Существование перечислимого, но не разрешимого множества.
- 4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценивание степени освоения обучающимися дисциплины осуществляется на основе «Положение о балльно-рейтинговой системе оценки успеваемости студентов».

Шкала соответствия рейтинговых оценок пятибалльным оценкам:

Оценка по 5-балльной системе		Оценка по 100- балльной системе
5	отлично	81 - 100
4	хорошо	61 - 80
3	удовлетворительно	41 - 60
2	неудовлетворительно	21 - 40
1	необходимо повторное изучение	0 - 20

В экзаменационную ведомость и зачетную книжку выставляются оценки по пятибалльной шкале и рейтинговые оценки в баллах.

При получении студентом на экзамене неудовлетворительной оценки в ведомость выставляется рейтинговая оценка в баллах (<40 баллов), соответствующая фактическим знаниям студента.

Общее количество баллов по дисциплине – 100 баллов.

Максимальное количество баллов, которое можно набрать в течение семестра за выполнение лабораторных работ, тестирование и самостоятельную работу (написание конспектов) – 70 баллов.

За выполнение лабораторных работ обучающийся может набрать максимально 40 баллов.

За тестирование обучающийся может набрать максимально 20 баллов.

За написание конспектов 10 баллов.

Шкала оценивания конспекта.

Критерии оценивания	Баллы
---------------------	-------

Текст конспекта логически выстроен и точно изложен, ясен весь	0-2
ход рассуждения	
Даны ответы на все поставленные вопросы, изложены научным	0-3
языком, с применением терминологии	
Максимальное количество баллов	5

Шкала оценивания лабораторных работ.

Критерий оценивания	Баллы
Аккуратность и полнота выполнения всех пунктов задания	0-6
Понимание логики выполнения задания и значения полученных результатов	0-4
Максимальное количество баллов	10

Шкала оценивания теста

Критерий оценивания	Баллы
Дан верный ответ на вопрос теста	1
Дан неверный ответ на вопрос теста	0
Максимальное количество баллов за один вопрос	1