Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Дата подписания: 24.10.2024 14:21:41

Уникальный программный ключ:

6b5279da4e034bff679172803da5b719994146СТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ

Государственное образовательное учреждение высшего образования Московской области МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ (МГОУ)

Факультет технологии и предпринимательства Кафедра основ производства и машиноведения

Согласовано управлением организации и контроля Качества образовательной деятельности

«10» mond

2020 г.

Начальник управления

/ М.А Миненкова /

Одобрено учебно-методическим

советом

Протокол «10» риски 20

Председатель

LEE CVCJERTI

Рабочая программа дисциплины

Образовательная робототехника

Направление подготовки

44.03.05 Педагогическое образование

Профиль:

Технологическое образование (проектное обучение) и образовательная робототехника

Квалификация

Бакалавр

Форма обучения

Очная

Согласовано учебно-методической комиссией

факультета технологии и

предпринимательства:

Протокол «<u>№ шим</u> 20<u></u> г. №

Председатель УМКом

/ А.Н. Хаулин /

Рекомендовано кафедрой основ

производства машиноведения

Протокол от «12» уга 2020 г. №13

Зав. кафедрой_

/М.Г. Корецкий /

Мытищи

2020

Автор-составитель:

Хасаншина Н.З. – доцент кафедры основ производства и машиноведения МГОУ

Рабочая программа дисциплины «Образовательная робототехника» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 44.03.05 Педагогическое образование, утвержденного приказом МИНОБРНАУКИ РОССИИ от 22.02.2018 № 125

Дисциплина входит в обязательную часть Блока 1 и является обязательной для изучения.

Реализуется в формате электронного обучения с применением дистанционных образовательных технологий.

Год начала подготовки 2020

СОДЕРЖАНИЕ

1. Планируемые результаты обучения	4
2. Место дисциплины в структуре образовательной программы	4
3. Объем и содержание дисциплины	5
4. Учебно-методическое обеспечение самостоятельной работы обучающихся	6
5. Фонд оценочных средств для проведения текущей и промежуточной	9
аттестации по дисциплине	
6. Учебно-методическое и ресурсное обеспечение дисциплины	21
7. Методические указания по освоению дисциплины	22
8. Информационные технологии для осуществления образовательного	23
процесса по дисциплине	
9. Материально-техническое обеспечение дисциплины	23

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цели и задачи дисциплины

Цель дисциплины: является ознакомление студентов с применением робототехнических конструкторов в образовательной деятельности школьников.

Задачи дисциплины:

- формирование у студентов знаний программирования робототехнических систем;
- развитие творческих способностей студентов;
- формирование у студентов знаний по конструированию роботов и автоматических устройств.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

ОПК-5 Способен осуществлять контроль и оценку формирования результатов образования обучающихся, выявлять и корректировать трудности в обучении

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в обязательную часть Блока 1 и является обязательной для изучения.

Для освоения дисциплины «Образовательная робототехника» студенты используют знания, умения и виды деятельности, сформированные в процессе изучения дисциплин «Черчение», «Математика», «Обработка конструкционных материалов», «Охрана труда и технические измерения», «Практикум по обработке конструкционных материалов», «Информационные технологии в техническом проектировании. 3D-моделирование», «Теория механизмов и машин» на предыдущих уровнях образования.

Освоение дисциплины «Образовательная робототехника» может быть полезно для самосовершенствования в профессиональной деятельности, внедрения новых технологий в культурно-просветительскую, научную и образовательную сферу, последующего изучения дисциплин вариативной части профессионального цикла, прохождения научно-педагогической и преддипломной практики, выполнения выпускной квалификационной работы.

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Показатель объема дисциплины	Форма обучения
	Очная
Объем дисциплины в зачетных единицах	8
Объем дисциплины в часах	288
Контактная работа:	164,6
Лекции	54 (6 ¹)
Практические занятия	108
Контактные часы на промежуточную аттестацию:	0,6
Зачет	0,2
Зачет с оценкой	0,4
Самостоятельная работа	100
Контроль	23,4

¹ Реализуется в формате электронного обучения с применением дистанционных образовательных технологий.

3.2. Содержание дисциплины

По очной форме обучения

Наименование тем дисциплины с кратким содержанием	Лекции	Практические вы занятия во
Тема 1. Образовательная робототехника .	$8(6)^2$	14
Тема 2 Конструкторы Spike, NXT, EV3, RobotC, Arduino, Raspberry	8	14
Тема 3 Соревнования роботов	8	14
Тема 4 Базовые задачи Spike, NXT, EV3	6	14
Тема 5 Расширенные задачи Spike, NXT, EV3	6	14
Тема 6 Роботы LEGOMindstorms: сложные модели	6	14
Тема 7 Робот-исследователь.	6	12
Тема 8 Лего-соревнования: решение поставленных задач	6	12
Итого:	54	108

Формой промежуточной 1 аттестации является зачет в 4 семестре и зачет с оценкой в 5,6 семестрах.

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Важнейшую роль в освоении дисциплин профессиональной подготовки играет самостоятельная работа магистрантов. Самостоятельная работа способствует воспитанию специалиста, ответственно выполняющего на практике свои профессиональные обязанности. В образовательном процессе можно выделить следующие основные формы самостоятельной работы студента:

- подготовка к лекциям. Эффективность лекционных занятий в значительной степени определяется степенью подготовленности магистранта к восприятию учебного материала. Поэтому перед лекцией следует познакомиться с лекционным материалом, изложенным в учебниках и электронных источниках; с основными понятиями, научно-методическим и информационно-аналитическим обеспечением информатизации сфер науки и образования, которые будут использованы на лекции; с дискуссионными вопросами по теме лекции и подготовить соответствующие вопросы преподавателю.
- подготовка к практическим работам. В процессе подготовки к практическим занятиям магистрант должен изучить соответствующий учебный материал, необходимый для освоения текущих компьютерных приложений, выполнения практических заданий на компьютере, подготовиться к опросу или выступлению с сообщением на коллоквиуме.
- подготовка к экзамену. В процессе подготовки к экзамену магистрант осуществляет осмысление и приведение в систему знаний и умений, полученных на лекциях и практических занятиях; знакомится с вопросами для самоконтроля, выделяет проблемные вопросы и обращается к преподавателю за соответствующей консультацией.

Самостоятельная работа магистров подразумевает работу под руководством преподавателя (консультации, помощь в выполнении программы) и индивидуальную работу

² Реализуется в формате электронного обучения с применением дистанционных образовательных технологий.

магистра, выполняемую на компьютере, в том числе, в компьютерном классе с выходом в Интернет.

При реализации образовательных технологий используются следующие виды самостоятельной работы:

- работа с конспектом занятия;
- работа с изучаемой пользовательской программой на персональном компьютере (ПК);
- создание научных учебных текстов и презентаций (подготовка сообщения);
- поиск информации в сети «Интернет» и литературе;
- подготовка к сдаче зачета.

Темы для самостоятельного изучения	Изучаемые вопросы	Кол- во часов	Формы самостоят ельной работы	Методичес кое обеспечени е	Форма отчетности
Тема 1.1. Образовательная робототехника.	Методика использования образовательно й робототехники в учебно-исследовательс кой деятельности обучающихся при технологическо й подготовке	12	Работа с литератур ой, Интернет	Список рекоменд. литературы; интернет- ресурсы	Сообщение Конспект
Тема 1.2. Конструкторы Spike, NXT, EV3, RobotC, Arduino, Raspberry	Конструкторы Spike, NXT, EV3, RobotC, Arduino, Raspberry	12	Работа на ПК, работа с литератур ой, Интернет	Список рекоменд. литературы; интернет- ресурсы.	Сообщение Конспект
Тема 1.3. Соревнования роботов	Соревнования роботов	12	Работа на ПК, работа с литератур ой, Интернет	Список рекоменд. литературы; интернет- ресурсы.	Сообщение Конспект
Тема 1.4. Базовые задачи Spike, NXT, EV3	Базовые задачи Spike, NXT, EV3	12	Работа на ПК, работа с литератур ой, Интернет	Список рекоменд. литературы; интернет- ресурсы	Сообщение Конспект
Тема 1.5. Расширенные задачи Spike, NXT, EV3	Расширенные задачи Spike, NXT, EV3	12	Работа на ПК, работа с литератур	Список рекоменд. литературы; интернет-	Сообщение Конспект

			ой,	ресурсы.	
Тема 1.6. Роботы LEGOMindstorms: сложные модели	Методика работы с комплектом оборудования LEGO MindstormsEV3 на уроках технологии	12	Интернет Работа на ПК, работа с литератур ой, Интернет	Список рекоменд. литературы; интернет- ресурсы.	Сообщение Конспект
Тема 1.7. Робот- исследователь.	Робот- исследователь.	12	Работа на ПК, работа с литератур ой, Интернет	Список рекоменд. литературы; интернет- ресурсы	Сообщение Конспект
Тема 1.8. Лего- соревнования: решение поставленных задач	Лего- соревнования	16	Работа на ПК, работа с литератур ой, Интернет	Список рекоменд. литературы; интернет- ресурсы.	Сообщение Конспект Тест
	Итого:	100			

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

В результате освоения дисциплины студент должен обладать следующими компетенциями:

Код и наименование	Этапы	Формы учебной работы по
компетенции	формирования	формированию компетенций в процессе
	компетенции	освоения образовательной программы
ОПК-5 Способен осуществлять контроль и	Когнитивный	Работа на лекционных занятиях (темы 1-8).
оценку формирования результатов образования обучающихся, выявлять и корректировать трудности	Операционный	Работа на практических занятиях (темы 1-8).
в обучении	Деятельностный	Самостоятельная работа (темы 1-8).

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Способен осуществлять контроль и оценку формирования результатов образования обучающихся, выявлять и корректировать трудности в обучении (ОПК-5)

ия	ния ей п			Шкала	а оцени	івания
Этапы формирования компетенции	Уровни освоения составляющей компетенции	Описание показателей	Критерии оценивания	Цифровое выражение	Выражение в баллах БРС	Словесное выражение
Когнитивный	базовый	Знание основных методов, способов и средств получения, хранения, переработки теоретического материала дисциплины «Образовательная робототехника», знание общих возможностей компьютера как средства	Неполное и слабое знание основных возможностей компьютера для получения, хранения, переработки теоретического материала дисциплины «Образовательная робототехника» для осуществления контроля и оценки формирования результатов образования обучающихся Текущий контроль: Тест, конспект Промежуточная аттестация: Зачет Зачет с оценкой	3	41- 60	удовл.
Когни	повышенный	управления текстовой и графической информации по образовательной робототехнике для осуществления контроля и оценки формирования результатов образования обучающихся	Знание основных возможностей компьютера для получения, хранения, переработки теоретического материала дисциплины «Образовательная робототехника» для осуществления контроля и оценки формирования результатов образования обучающихся Текущий контроль: Тест, конспект Промежуточная аттестация: Зачет Зачет с оценкой	4	61 - 80	хорошо

	повышенный	графической информации по образовательной робототехнике для осуществления контроля и оценки формирования результатов образования обучающихся	Умение применять знания основных возможностей компьютера для получения, хранения, переработки теоретического материала дисциплины «Образовательная робототехника» для осуществления контроля и оценки формирования результатов образования обучающихся Текущий контроль: Тест, конспект	4	61 - 80	ошодох
Операционный	базовый	Умение выбирать методы, способы и средства получения, хранения, переработки теоретического материала дисциплины «Образовательная робототехника», знание общих возможностей компьютера как средства управления текстовой и	Неполное и слабо закрепленное умение применять знания основных возможностей компьютера для получения, хранения, переработки теоретического материала дисциплины «Образовательная робототехника» для осуществления контроля и оценки формирования результатов образования обучающихся Текущий контроль: Тест, конспект Промежуточная аттестация: Зачет Зачет с оценкой	3	41- 60	удовл.
	продвинутый		Уверенное знание основных возможностей компьютера для получения, хранения, переработки теоретического материала дисциплины «Образовательная робототехника» для осуществления контроля и оценки формирования результатов образования обучающихся Текущий контроль: Тест, сообщение, конспект Промежуточная аттестация: Зачет Зачет с оценкой	5	81 - 100	ОТЛИЧНО

			Промежуточная аттестация: Зачет Зачет с оценкой			
	продвинутый		Уверенное умение применять знания основных возможностей компьютера для получения, хранения, переработки теоретического материала дисциплины «Образовательная робототехника» для осуществления контроля и оценки формирования результатов образования обучающихся Текущий контроль: Тест, сообщение, конспект Промежуточная аттестация: Зачет зачет с оценкой	5	81 - 100	ОТЛИЧНО
Деятельностный	базовый	Готовность выбирать рациональный метод, способ и средства получения, хранения, переработки информации, готовность использовать современные новые операционные компьютерные программы для выполнения расчетов деталей	Накопление первоначального опыта осуществления работы с операционной системой Windows 7 Professional, а также программными средствами офисного назначения Microsoft Office Excel, Microsoft Office PowerPoint, Microsoft Office Word, с конструкторами Spike, NXT, EV3, RobotC, Arduino, Raspberry Текущий контроль: Тест, конспект Промежуточная аттестация: Зачет Зачет с оценкой	3	41- 60	удовл.
	повышенный	простейших конструкций для осуществления контроля и оценки формирования результатов образования обучающихся	Уверенное владение базовыми операционными компьютерными программы. Накопление полезного опыта осуществления работы с операционными системами Windows 7 Professional, Windows 8 Enterprise, а	4	61 - 80	ошодох

			,	1
	также программными			
	средствами офисного			
	назначения Microsoft Office			
	Excel, Microsoft Office			
	PowerPoint, Microsoft Office			
	Word, с конструкторами			
	Spike, NXT, EV3, RobotC,			
	Arduino, Raspberry			
	Текущий контроль:			
	Тест, конспект			
	Промежуточная аттестация:			
	Зачет			
	Зачет с оценкой			
	Быстрое и осознанное			
	владение операционными			
	компьютерными			
	программами			
	операционными системами			
	Windows 7 Professional,			
	Windows 8 Enterprise,			
	Windows XP Professional, a			
Ĭ,	также программными			
	средствами офисного			40
HX	назначения Microsoft Office	5	81 -	ИАП
ДВ]	Excel, Microsoft Office	2	100	отлично
продвинутый	PowerPoint, Microsoft Office			0
	Word, с конструкторами			
	Spike, NXT, EV3, RobotC,			
	Arduino, Raspberry			
	Текущий контроль:			
	Тест, сообщение, конспект			
	Промежуточная аттестация:			
	Зачет			
	Зачет с оценкой			
	Janet C Olichkon			<u> </u>

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Пример тестирования Тест №1

Собрать механизм преобразования вращательных движений - зубчатую передачу с различными значениями передаточного числа. Рассчитать передаточное число для каждой модели.

Ответить на теоретические вопросы:

1. Совокупность механизмов, заменяющих человека или животное в определенной области; преобразует энергию из одного вида в другие (в основном, в тепловую энергию) это:

- А) Механизм;
- Б) Робот;
- В) Машина.
- 2. Слово «Робот» было придумано:
- А) К. Чапек;
- Б) Аль-Джазари;
- В) Л.Давинчи.
- 3. Робот-гуманоид, т.е. антропоморфная, имитирующая человека машина, стремящаяся заменить человека в любой его деятельности это:
 - А) Звероробот;
 - Б) Андроид;
 - В) Биоробот.
 - 4. Ламповый триггер изобрел:
 - А) И.С. Брук;
 - Б) Б. И. Рамеев;
 - В) М. А. Бонч-Бруевич.
 - 5.Первый самоходный аппарат для исследования Луны назывался:
 - A) «Луна-17»;
 - Б) «Луноход-1»;
 - В) «Протон-К».
 - 6. Датчик это...
- а) элемент автоматики, преобразующий самые разные физические величины (размеры, температуру, давление, расход, скорость, уровень, влажность и др.) в электрический сигнал;
- б) устройство, преобразующее контролируемую величину в такой вид сигнала, который более удобен для воздействия на последующие элементы автоматики;
- в) чувствительный элемент, преобразующий параметры среды в пневматический сигнал.
- 7. Внешне они выглядят, как коробочки с выпуклым матовым стеклом, обращенным к зоне охраны. «Матовое стекло» не однородно, а разграничено на сектора с разным углом наклона и плотности относительно поверхности, какой это датчик?
 - а) датчик движения;
 - б) датчик абсолютного давления;
 - в) датчик относительного давления.
 - 8. В общем виде датчик можно представить в виде?

- а) поляризатор, разветвители;
- б) источник света, светоприемное устройство;
- в) чувствительный элемент, преобразователь.
- 9. Какие датчики основаны на изменении индуктивного сопротивления электромагнитного дросселя при перемещении одной из подвижных его деталей
 - а) пьезоэлектрические;
 - б) емкостные;
 - в) индуктивные.
- 10. Какая группа датчиков служит для преобразования неэлектрического контролируемого или регулируемого параметра в параметры электрической цепи?
 - а) параметрические;
 - б) емкостные;
 - в) генераторные.
- 11.Измерительный преобразователь в виде реостата, сопротивление которого изменяется пропорционально измеряемой величине (линейному или угловому перемещению).
 - а) ультразвуковой датчик;
 - б) реостатный датчик;
 - в) датчик движения.
- 12. Какой датчик представляет собой конденсатор, в котором емкостное сопротивление изменяется при изменении измеряемой (регулируемой) неэлектрической величины
 - а) индуктивный;
 - в) емкостной датчик;
 - в) микроволновой.
- 13. Датчики предназначены для преобразования неэлектрического контролируемого или регулируемого параметра в ЭДС. Эти датчики не требуют постороннего источника энергии, так как сами являются источником ЭДС.
 - а) генераторные датчики;
 - б) параметрические датчики;
 - в) контактные датчики.
 - 14. На что следует обращать внимание при выборе датчика?
 - а) быстродействие и чувствительность;
- б) периодичность и максимальную частоту воздействий, атмосферные условия (влажность и температуру воздуха), наличие вибраций в установке;

- в) масса и цена.
- 15. Датчики, в которых изменяемое механическое перемещение преобразуется в замкнутое или разомкнутое состояние контактов, управляющих электрической цепью.
 - а) контактные датчики;
 - б) бесконтактные датчики;
 - в) неэлектрические датчики.

Правильные ответы к тесту

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
В	a	б	В	б	б	a	В	В	a	б	В	a	б	a

Представить выполненный тест в письменной форме.

Тест №2

Выполнить сборку модели робота манипулятора или Dinorex [динорекс] – роботтрицератопс, Mr. Beam [мистер бим] – робот-линейка и продемонстрировать его движения. Ответить на теоретические вопросы:

- 1) Платформа EV3 обозначает...
- А) третье поколение роботов;
- Б) эволюцию роботов;
- В) нумерация моделей;
- Г) количество программируемых блоков.
- 2) Интеллектуальный модуль EV3 это...
- А) совокупность датчиков и моторов;
- Б) центр управления извне;
- В) программируемый блок;
- Г) набор микросхем для радиоуправления.
- 3) В базовый набор LegoTechnic входят количество деталей равное ...
- A) 777;
- Б) 641;
- B) 1200;
- Γ) 594.
- 4) В базовый комплект Mindstorms EV3 не входит...
- А) датчик касания;
- Б) датчик температуры;
- В) датчик цвета;
- Г) инфракрасный маяк.

3) Операционная систем не предполагает возможности управления росотом.
A) iOS;
Б) Android;
B) Windows phone.
6) Какое количество роботов можно собрать, орудуя базовым комплектом Mindstorms EV35
A) 5;
Б) 17;
B) 1;
Γ) 12.
7) Какой вид связи не доступен для управления роботом Mindstorms EV3?
A) BLUETOOTH;
Б) Wi-Fi;
B) GSM.
8) Какой тип соединительных кабелей используется в наборе Mindstorms EV3?
A) RJ-12;
Б) RJ-45;
B)USB Type-C.
9) Какие платформы не поддерживают продукт для программирования (2 ответа)?
A) Chrome OS;
Б) Windows;
B) Mac OS;
Γ) Steam OS.
10) Какой (в основном) язык программирования используется для программирования
робота?
A) C#;
Б) С++;
B) JAVA;
Γ) F#.
11) Какой тип батареи использует программируемый блок EV3?
А) мизинчиковые;
Б) пальчиковые;
В) крона;
Г) большая.
12) Какое излучение используется в пульте управления?

А) инфракрасное;
Б) ультрафиолетовое;
В) радиоволны.
13) Какой тип батареи используется ИК-маяком (пульт управления)
А) крона;
Б) пальчиковые;
В) большая;
Г) мизинчиковые.
14) Сколько датчиков и двигателей можно подсоединить одновременно к одному
программируемому блоку EV3?
A) 3;
Б) 4;
B) 8;
Γ) 10.
15) Где можно запрограммировать модуль EV3?
А) С телефона (планшета);
Б) С компьютера;
В) С компьютера и телефона(планшета);
Г) С компьютера, телефона(планшета) и самого модуля.
16) Где получить дополнительные инструкции по сборке робота?
А) Бесплатно загрузить с официального сайта;
Б) Купить в интернет-магазине;
В) Через приложение для смартфона.
17) Файлы, какого формата не поддерживаются редактором контента?
A) MP4;
Б) MOV;
B) AVI;
Γ) WMV.
18) Какие моторы входят в набор Lego Mindstorms EV3?
А) Один большой сервомотор и один средний сервомотор;
Б) Два больших сервомотора и один средний сервомотор;
В) Два больших сервомотора и два средних сервомотора;
Г) Один большой сервомотор и три средних сервомотор.

19) Официальное приложение для управления роботом от LEGO MINDSTORMS.

- А) EV3 «Почини Фабрику»;
- Б) EV3 Programmer;
- B) EV3 Robot Commander;
- Γ) EV3 3D Builder.
- 20) Сколько времени требуется для зарядки аккумуляторной батареи LEGO MINDSTORMS?
- А)10 ч;
- Б) 4 ч;
- В) 30 мин;
- Г) 2 ч.
- 21) Сколько интеллектуальных модулей LEGO MINDSTORMS EV3 можно подключить шлейфом?
- А) до четырех модулей;
- Б) более пяти;
- В) не больше двух;
- Г) один.
- 22) Адаптер Wi-Fi, который рекомендуется использовать с интеллектуальным модулем EV3.
- A) DSLG15;
- Б) SKYNET 300;
- B) DSR 500N;
- Γ) NETGEAR N150.
- 23) Что не входит в набор LEGO MINDSTORMS EV3?
- А) USB-кабель;
- Б) Соединительные кабели;
- В) Датчик скорости;
- Г) Модуль EV3.

Примерная тематика сообщений.

- 1. Датчики, применяемые в робототехнических конструкторах.
- 2. Сервоприводы, применяемые в робототехнических конструкторах.
- 3. Передачи, применяемые в робототехнических конструкторах.
- 4. Типы контролеров, применяемые в робототехнических конструкторах.
- 5. Основные значимые преимущества использования робототехнического конструктора Lego Mindstorms EV3.
- 6. Основные значимые преимущества использования робототехнического конструктора Lego Education WeDo.
- 7. Основные значимые преимущества использования робототехнического конструктора Lego technics.

- 8. Основные значимые преимущества использования робототехнического конструктора Arduino.
- 9. Основные значимые преимущества использования робототехнического конструктора Амперка.

Примерные вопросы к зачету:

- 1. Этапы автоматизации производства.
- 2. Степени автоматизации производства.
- 3. Общее и разное роботов и машин с ЧПУ.
- 4. Роботы-гуманоиды.
- 5. Промышленные роботы.
- 6. Обзор школьных робототехнических комплектов.
- 7. Автоматы и полуавтоматы.
- 8. Датчики, применяемые в робототехнических конструкторах.
- 9. Сервоприводы, применяемые в робототехнических конструкторах.
- 10. Передачи, применяемые в робототехнических конструкторах.

Примерные вопросы к зачету с оценкой:

- 1. Типы контролеров, применяемые в робототехнических конструкторах.
- 2. Основные значимые преимущества использования робототехнического конструктора Lego Mindstorms EV3.
- 3. Основные значимые преимущества использования робототехнического конструктора Lego Education WeDo.
- 4. Основные значимые преимущества использования робототехнического конструктора Lego technics.
- 5. Основные значимые преимущества использования робототехнического конструктора Arduino.
- 6. Основные значимые преимущества использования робототехнического конструктора Амперка.
- 7. Устройство и принцип работы гироскопического датчика.
- 8. Устройство и принцип работы ультразвукового датчика.
- 9. Устройство и принцип работы инфракрасного датчика.
- 10. Устройство и принцип работы лазерного датчика.
- 11. Устройство и принцип работы датчика освещенности/цвета.
- 12. Устройство и принцип работы кнопочного датчика вкл/выкл.
- 13. Устройство и принцип работы температурного датчика.
- 14. Устройство и принцип работы сервопривода Lego.
- 15. Алгоритм программирования составление блок-схем.

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Вид работы	количество баллов	
Конспект	до 10 баллов	
Сообщение	до 20 баллов	
Тест	до 20 баллов	
Зачет	до 20 баллов	
Зачет с оценкой	до 30 баллов	

<u>Требования к тестированию</u>: написание *теста* оценивается по шкале от 0 до 5 баллов. Максимальное количество за тесты 20 баллов (4 теста по 5 баллов). Освоение компетенций зависит от результата написания теста: 4-5 баллов (80-100% правильных ответов) - компетенции считаются освоенными на высоком уровне (оценка отлично); 3 балла (70-75 % правильных ответов) - компетенции считаются освоенными на базовом уровне (оценка хорошо); 2 балла (50-65 % правильных ответов) - компетенции считаются освоенными на удовлетворительном уровне (оценка удовлетворительно); 0 -1 балл (менее 50 % правильных ответов) - компетенции считаются не освоенными (оценка неудовлетворительно).

Шкала оценивания конспектов

Конспекты оцениваются по шкале от 0 до 1 балла. Максимальное количество баллов – 10. (5 конспектов по 2 балла)

Показатель	Балл
Выполнено	2 балла
Не выполнено	0 баллов

Шкала оценивания устного сообщения

Устное сообщение оценивается по шкале от 0 до 5 баллов. Максимальное количество за рефераты 20 баллов (4 сообщения по 5 баллов).

Показатель	Балл
Подготовлено устное сообщение и соответствует тематике	0-2 балла
Все вопросы раскрыты	0 - 2 балла
Приведенные аргументы логичны и убедительны	0 - 1 балл
Не выполнено	0 баллов
Всего	5 баллов

Сообщение на заданную тему

При подготовке сообщения бакалавр должен учитывать следующее:

- 1. Необходимо оценить время, требуемое для его написания, оформления (как правило, в форме презентации), подготовки к выступлению, после чего составить план работы над сообщением.
- 2. Для написания сообщения следует сначала подобрать материал по теме сообщения (используя учебно-методическое и ресурсное обеспечение дисциплины).
- 4. После изучения материала составляется план сообщения, который следует обсудить с преподавателем.
- 6. По составленному плану написать текст сообщения, следуя общепринятой структуре (вводная часть, цель и задачи сообщения, содержательная часть, заключение).
- 7. Во вводной части сообщения необходимо сформулировать собственное понимание актуальности выбранной темы, сформулировать цель и задачи сообщения. В содержательной части следует изложить сущность проблемы, привести разные точки зрения, изложенные у разных авторов. В заключении необходимо подвести итоги по рассмотрению темы сообщения, показать перспективы решения проблемы.
 - 8. Подготовить иллюстрационный материал к презентации.
- 10. Подготовиться к выступлению и к ответам на возможные вопросы в ходе дискуссии. При подготовке необходимо учитывать время, отпущенное на доклад (5-10 минут).

Текущий контроль знаний в виде сообщения на заданную тему на коллоквиуме, проводится в рамках практического занятия.

Зачет (4 семестр) и Зачет с оценкой (5-6 семестр)

Промежуточная аттестация по дисциплине, определяющая степень усвоения знаний, умений и навыков студентов и характеризующая этапы формирования компетенций по учебному материалу дисциплины, проводится в виде зачета и зачета с оценкой.

К зачёту допускаются студенты, успешно выполнившие все задания на практических занятиях и в рамках самостоятельной работы, подготовившие сообщения на заданную тему и доложившие их на коллоквиуме.

<u>Требования к зачету (4 семестр) и зачету с оценкой (5-6 семестр)</u> зачет по дисциплине «Образовательная робототехника» проводится в конце 4-6 семестров.

Выбор формы и порядок проведения зачета осуществляется кафедрой основ производства и машиноведения. Оценка знаний студента в процессе экзамена осуществляется исходя из следующих критериев:

- а) умение сформулировать определения понятий, данных в вопросе, с использованием специальной терминологии, показать связи между понятиями;
- б) способность дать развернутый ответ на поставленный вопрос с соблюдением логики изложения материала; проанализировать и сопоставить различные точки зрения на поставленную проблему;
- в) умение аргументировать собственную точку зрения, иллюстрировать высказываемые суждения и умозаключения практическими примерами на компьютере;

При оценке студента на зачете преподаватель руководствуется следующими критериями:

Критерии оценки ответов студентов на зачете с оценкой

Оценка	Показатели	Количество баллов	
Отлично (зачтено)	плановые практические задания выполнены в полном объеме; приведен полный, исчерпывающе правильный ответ	23-30 81-100	
Хорошо (зачтено)	плановые практические задания выполнены в полном объеме; поставленные задачи решены правильно, однако рассуждения, приводящие к ответу, представлены не в полном объеме, или в них содержатся логические недочеты; устный ответ на вопросы содержит неточности, незначительные погрешности в изложении теории.	15-22 61-80	
Удовлетвор ительно (зачтено)	плановые практические задания выполнены, даны правильные ответы, но в некоторых из них допущены ошибки; устный ответ на вопросы показывает отдельные пробелы в знаниях студента.	7-14 41-60	
Неудовлетв орительно (не зачтено)	плановые практические задания выполнены не в полном объеме; устный ответ на вопросы содержит грубые ошибки в изложении теории, которые показывают значительные пробелы в знаниях студента; более половины вопросов	0-6 0-40	

ания и умения не программы.

Описание шкалы оценивания

Цифровое	Выражение	Словесное выражение	Описание оценки в требованиях к уровню
выражение	в баллах		и объему компетенций
	БРС		
5	81-100	Отлично (зачтено)	Освоен продвинутый уровень всех
			составляющих компетенций ОПК-5
4	61-80	Хорошо (зачтено)	Освоен повышенный уровень всех
			составляющих компетенций ОПК-5.
3	41-60	Удовлетворительно	Освоен базовый уровень всех
		(зачтено)	составляющих компетенций ОПК-5
2	до 40	Неудовлетворительно	Не освоен базовый уровень всех
		(не зачтено)	составляющих компетенций ОПК-5.

Критерии оценки ответов студентов на зачете

Оценка	Показатели	Количество баллов	
зачтено	плановые практические задания выполнены в полном объеме; приведен полный, исчерпывающе правильный ответ	16-20 81-100	
зачтено	плановые практические задания выполнены в полном объеме; поставленные задачи решены правильно, однако рассуждения, приводящие к ответу, представлены не в полном объеме, или в них содержатся логические недочеты;	11-15 61-80	
зачтено	устный ответ на вопросы содержит неточности, незначительные погрешности в изложении теории.	6-10 41-60	
зачтено	плановые практические задания выполнены, даны правильные ответы, но в некоторых из них допущены ошибки; устный ответ на вопросы показывает отдельные пробелы в знаниях студента.	0-10 41-00	
Не зачтено	плановые практические задания выполнены не в полном объеме; устный ответ на вопросы содержит грубые ошибки в изложении теории, которые показывают значительные пробелы в знаниях студента; более половины вопросов оказались без ответов; знания и умения не соответствуют требованиям программы.	0-5 0-40	

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная литература

- 1. Злаказов, А.С. Уроки Лего-конструирование в школе: методическое пособие / Под науч. ред. В.В. Садырина, В.Н. Халамова. М.: БИНОМ, Лаборатория знаний, 2011.
- 2. Иванов А. А.Основы робототехники: Учебное пособие / А.А. Иванов. М.: Форум, 2012. 224 с.: 60х90 1/16. (Высшее образование). (переплет) ISBN 978-5-91134-575-4
- 3. Пантелеев, В.Н. Основы автоматизации производства: учебник для учреждений нач. и проф.образования/ В.Н. Пантелеев, В.М. Прошин.- 5-е изд. Перераб.-М.: Издательский центр «Академия», 2013.-208с.

6.2. Дополнительная литература

- 1. Возобновляемые источники энергии: Книга для учителя. LEGO Group. М., 2012.
- 2. Гайсина И.Р. Развитие робототехники в школе / И.Р. Гайсина // Педагогическое мастерство (II): материалы междунар. заоч. науч. конф. (г. Москва, декабрь 2012 г.). М.: Буки-Веди, 2012. С. 105-107.
- 3. Гейтс У. Механическое будущее // В мире науки. Информационные технологии. 2007. №5.
- 4. Глозман Е.С. Становление и развитие технологического образования школьников в отечествином образовании/Теория и практика общественного развития.- N1,2015 Γ .
- 5. Занаев,С.3. Современное технологическое образование: Проблемы и перспективы// Проблемы современного образования www.pmedu.ru. №5, 99103, 2011Г.
- 6. Индустрия развлечений. ПервоРобот. Книга для учителя и сборник проектов. LEGO Group, перевод ИНТ.
- 7. КалугинаВ.А., ТавберидзеВ.А, ВоробьеваВ.А. Основы лего-конструирования: методические рекомендации. Курган: ИРОСТ, 2012.
- 8. Намсараев, С.Д. Современные вызовы технологическому образованию. Вестник Бурятского государственного университета. № 1.02. 2012.
- 9. ПервоРобот LEGO® WeDoTM.Книга для учителя / [Электронный ресурс] / Режим доступа оптический диск.
- 10. ПерфильеваЛ.П., ТрапезниковаТ.В., ШаульскаяЕ.Л., ВыдринаЮ.А. Образовательная робототехника во внеурочной учебной деятельности: учебно-методическое пособие / Под рук. В.Н. Халамова. Челябинск: Взгляд, 2011.
- 11. Рогов, Ю.В. Робототехника для детей и их родителей/ Под ред. В.Н. Халамова-Челябинск, 2012.
- 12. Технология и информатика: проекты и задания. ПервоРобот. Книга для учителя. М.: ИНТ, 2012.-80c.
 - 13. Филиппов С.А. Робототехника для детей и родителей. СПб, «Наука», 2011.
- 14. Хуторской А.В. Ключевые компетенции и образовательные стандарты / [Электронный ресурс] // Интернет-журнал «ЭЙДОС» www.eidos.ru.
- 15. Школа Лего-роботов / Автор: Александр Попов/[Электронный ресурс] Режим доступа:свободный http://russos.livejournal.com/817254.html
- 16. Энергия, работа, мощность. Книга для учителя. LEGO Group, перевод ИНТ. 63 с.
 - 17. Юревич Е.И. Основы робототехники СПб: БХВ-Петербург, 2005.
- 18. Иванов А. А. Мехатроника и роботехника Основы робототехники: Учебное пособие / А.А. Иванов. М.: Форум, 2014. 224 с.

6.3. Интернет-ресурсы

- 1. http://mon.gov.ru Министерство образования и науки РФ;
- 2. http://www.fasi.gov.ru Федеральное агентство по науке и образованию;
- 3. http://www.edu.ru Федеральный портал «Российское образование»;
- 4. http://www.garant.ru информационно-правовой портал «Гарант»
- 5. http://www.school.edu.ru Российский общеобразовательный портал;
- 6. http://www.openet.edu.ru Российский портал открытого образования;
- 7. http://www.ict.edu.ru портал по информационно-коммуникационным технологиям в образовании;
- 8. http://pedagogic.ru педагогическая библиотека;
- 9. http://www.pedpro.ru журнал «Педагогика»;
- 10. http://www.informika.ru/about/informatization_pub/about/276 научно-методический журнал «Информатизация образования и науки»;
- 11. http://www.hetoday.org журнал «Высшее образование сегодня».
- 12. http://www.znanie.org/ Общество «Знание» России
- 13. http://www.gpntb.ru Государственная публичная научно-техническая библиотека.
- 14. http://www.rsl.ru Российская национальная библиотека.
- 15. http://www.gpntb.ru Публичная электронная библиотека.
- 16. http://www.znanium.com/ Электронно-библиотечная система
- 17. http://www.biblioclub.ru/ Университетская библиотека онлайн
- 18. http://www.elibrary.ru Научная электронная библиотека

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

1.Методические рекомендации по организации и выполнению самостоятельной работы студентов, авторы: заведующий кафедрой основ производства и машиноведения, кандидат педагогических наук, доцент Корецкий М.Г., декан факультета технологии и предпринимательства, кандидат педагогических наук, доцент Хаулин А.Н., доктор технических наук, профессор Гуляев А.А., доктор педагогических наук, профессор Лавров Н.Н., кандидат технических наук, доцент Свистунова Е.Л., кандидат педагогических наук, доцент Шпаков Н.П.

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows Microsoft Office Kaspersky Endpoint Security

Информационные справочные системы:

Система ГАРАНТ Система «Консультант Плюс»

Профессиональные базы данных:

fgosvo.ru pravo.gov.ru www.edu.ru

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения занятий лекционного и семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций,

текущего контроля и промежуточной аттестации, укомплектованные учебной мебелью, доской, демонстрационным оборудованием;

- помещения для самостоятельной работы, укомплектованные учебной мебелью, персональными компьютерами с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду МГОУ;
- помещения для хранения и профилактического обслуживания учебного оборудования, укомплектованные мебелью (шкафы/стеллажи), наборами демонстрационного оборудования и учебно-наглядными пособиями.