Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Дата подписания: 10.06.2025 10МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Уникальный государственное автономное образовательное учреждение высшего образования

6b5279da4e034bff679172803da5ыросудаРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ»

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ)

Физико-математический факультет Кафедра фундаментальной физики и нанотехнологии

Согласовано

деканом физико-математического факультета

«19» марта 2025 г.

/Кулешова Ю.Д./

Рабочая программа дисциплины

Атомная и ядерная физика (практикум)

Направление подготовки

03.03.02 Физика

Квалификация

Бакалавр

Форма обучения

Очная

Согласовано учебно-методической комиссией Рекомендовано кафедрой физико-математического факультета

Протокол «19» марта 2025 г. №7

Председатель УМКом /Кулешова ЮД/

фундаментальной физики и нанотехнологии

Протокол от «11» марта 2025 г, № 11

Зав. кафедрой

/Холина С.А./

Москва 2025

Авторы-составители:

Васильчикова Е. Н., кандидат физико-математических наук, доцент, Барабанова Н. Н., кандидат физико-математических наук, доцент, Емельянов В. А., кандидат физико-математических наук, доцент.

Рабочая программа дисциплины «Атомная и ядерная физика (практикум)» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 03.03.02 Физика, утвержденного приказом МИНОБРНАУКИ РОССИИ от 07.08.2020 г. № 891.

Дисциплина входит в модуль «Общий и специальный физический практикум» обязательной части Блока 1 «Дисциплины (модули)» и является обязательной для изучения.

Год начала подготовки (по учебному плану) 2025.

СОДЕРЖАНИЕ

1.	Планируемые результаты обучения	4
2.	Место дисциплины в структуре образовательной программы	4
3.	Объем и содержание дисциплины	4
4.	Учебно-методическое обеспечение самостоятельной работы обучающихся	6
5.	Фонд оценочных средств для проведения текущей и промежуточной аттестации	8
	по дисциплине	
6.	Учебно-методическое и ресурсное обеспечение дисциплины	13
7.	Методические указания по освоению дисциплины	14
8.	Информационные технологии для осуществления образовательного процесса по	14
	дисциплине	
9.	Материально-техническое обеспечение дисциплины	15

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цель и задачи дисциплины

Цель освоения дисциплины «Атомная и ядерная физика (практикум)»: формирование систематизированных знаний в области общей и экспериментальной физики, формирование и совершенствование у студентов навыков экспериментальной деятельности.

Задачи дисциплины: изучение основных законов физики атома, приобретение навыков осуществления учебного и научного эксперимента, оценки результатов эксперимента, подготовки отчетных материалов о проведенной исследовательской работе.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции: ОПК-2. Способен проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальные данные.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Атомная и ядерная физика (практикум)» входит в модуль «Общий и специальный физический практикум» обязательной части Блока 1 «Дисциплины (модули)» и является обязательной для изучения.

Для освоения дисциплины «Атомная и ядерная физика (практикум)» используются знания, умения и виды деятельности, сформированные в процессе изучения следующих дисциплин: «Введение в общую физику», «Механика», «Молекулярная физика», «Электричество и магнетизм», «Оптика», «Математический анализ», «Дифференциальные уравнения и вариационное исчисление». Компетенции, знания, навыки и умения, полученные в ходе изучения дисциплины, должны всесторонне использоваться и развиваться студентами в процессе последующей профессиональной деятельности

Освоение данной дисциплины является необходимой основой для изучения таких дисциплин, как «Квантовая теория», «Специальный физический практикум», «Физика конденсированного состояния».

Изучение дисциплины «Атомная и ядерная физика (практикум)» является базой для дальнейшего обучения в бакалавриате, при прохождении практики и в профессиональной деятельности.

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Поморожану облама писумуничи	Форма обучения
Показатель объема дисциплины	Очная
Объем дисциплины в зачетных единицах	2
Объем дисциплины в часах	72
Контактная работа:	30,2
Лабораторные работы	30
из них в форме практической подготовки	30
Контактные часы на промежуточную аттестацию:	0,2
Зачет	0,2
Самостоятельная работа	34
Контроль	7,8

Формой промежуточной аттестации является зачет в 6 семестре.

3.2. Содержание дисциплины

	Количество часов Лабораторные занятия	
Наименование разделов (тем) дисциплины с кратким содержанием	Общее кол-во	из них, в форме практич еской подготов ки
Тема 1. Исследование атомарного спектра водорода.		
Основные закономерности в спектрах излучения и поглощения.		
Спектр атома водорода (эмпирическая формула Бальмера). Модель	5	5
атома Резерфорда-Бора Постулаты Бора. Энергетические уровни		
водородоподобных ионов.		
Тема 2. Исследование стационарных состояний атома гелия.	5	5
Недостатки модели атома Резерфорда-Бора. Квантовые числа, их		
физический смысл. Спектральный символ терма.		
Тема 3. Определение ширины запрещенной зоны	5	5
полупроводника.		
Зонная теория проводимости. Структура зон в металлах, полупроводниках, диэлектриках. Методы определения ширины		
полупроводниках, диэлектриках. Методы определения ширины запрещенной зоны полупроводника.		
Тема 4. Определение работы выхода электрона из металла.	5	5
Способы измерения работы выхода электрона из металла.	3	
устройство, характеристика, применение.		
Тема 5. Соотношение неопределенностей.	5	5
Волновые свойства частиц. Корпускулярно-волновой дуализм.	5	
Гипотеза де Бройля. Соотношение неопределенностей.		
6. Изучение лазерного излучения.	5	5
Спонтанное и вынужденное (индуцированное) излучение. Принципы	Č	
работы лазера. Рубиновый и гелий-неоновый лазеры.		
Итого	30	30

ПРАКТИЧЕСКАЯ ПОДГОТОВКА

Тема	Задание на практическую подготовку	количество часов
Тема 1. Исследование атомарного спектра водорода.	Постулаты Бора. Энергетические уровни водородоподобных ионов. Расчет полной энергии электрона на боровской орбите. Построить схему энергетических уровней атома водорода и указать на ней спектральные серии: Лаймана, Бальмера и т.д.	5
Тема 2. Исследование стационарных состояний атома гелия.	Квантовые числа, их физический смысл. Спектральный символ терма. Упругие и неупругие соударения электронов и атомов. Определить по схеме энергетические уровни, между которыми осуществляется переход при неупругих соударениях.	5
Тема 3. Определение ширины	Зонная теория проводимости.	5

запрещенной зоны Структур	зон в металлах,
1 1 2 2 1	дниках, диэлектриках.
	рерми, ее физический смысл.
	оводность металлов и
полупров	
	,
температ	
Тема 4. Определение работы Основны	
	кта (уравнение Эйнштейна,
красная	граница). Особенности
	рной характеристики. Работа 5
	причины ее существования.
	ронные приборы, их
устройст	о, характеристика,
применен	ie.
Тема 5. Соотношение Сопряже	ные величины: определение и
неопределенностей. примеры	Соотношение
неопреде	енностей и его физический 5
смысл.	Корпускулярно-волновой
дуализм.	ипотеза де Бройля.
6. Изучение лазерного Взаимоде	іствие излучения с
излучения. вещество	г: поглощение, спонтанное и
	ное излучение. Среда с
	заселенностью уровней –
	оздания. Свойства лазерного 5
	. Механизм возбуждения
	в гелий-неоновом лазере по
	огетических уровней.
	о гелий-неонового лазера.
	30

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ CAMOCTOЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

	Темы для	Изучаемые	Кол-	Формы	Методически	Формы
	самостоятельно	вопросы	во	самостоят.	e	отчетност
	го изучения		часов	работы	обеспечения	И
1.	Опыты	1.Особенности	7	Работа с	Учебно-	Домашнее
	Резерфорда по	экспериментальн		литературой,	методическое	задание
	рассеянию α-	ой установки.		сетью	и ресурсное	
	частиц.	2.Формула		Интернет,	обеспечение	
		Резерфорда.		консультаци	дисциплины	
				И,	(п. 6.1, 6.2,	
				практически	6.3)	
				е задания,		
				подготовка к		
				выполнению		
				лабораторны		
				х работ		
2.	Опыты Франка и	1.Описание	5	Работа с	Учебно-	Домашнее
	Герца.	состояния		литературой,	методическое	задание
		электрона в		сетью	и ресурсное	
		атоме.		Интернет,	обеспечение	
		2.Магнитный		консультаци	дисциплины	

					((1 (2	1
		момент атома.		и, практически е задания, подготовка к выполнению лабораторны х работ	(п. 6.1, 6.2, 6.3)	
3.	Зонная теория твердых тел.	1.Энергия Ферми. 2.Электропровод ноть металлов и полупроводнико в. 3.Сверхпроводи мость.	5	Работа с литературой, сетью Интернет, консультаци и, практически е задания, подготовка к выполнению лабораторны х работ, подготовка докладов и презентаций	Учебно- методическое и ресурсное обеспечение дисциплины (п. 6.1, 6.2, 6.3)	Доклад, презентац ия
4.	Квантовая теория фотоэффекта.	1.Законы фотоэффекта, их объяснение. 2.Работа выхода. 3.Красная граница фотоэффекта. 4.Определение постоянной Планка.	5	Работа с литературой, сетью Интернет, консультаци и, практически е задания, подготовка к выполнению лабораторны х работ	Учебно- методическое и ресурсное обеспечение дисциплины (п. 6.1, 6.2, 6.3)	Домашнее задание
5.	Эксперименталь ное подтверждение волновых свойств частиц	1.Опыты Девиссона — Джермера. 2.Опыты Томсона — Тартаковского.	5	Работа с литературой, сетью Интернет, консультаци и, практически е задания, подготовка к выполнению лабораторны х работ	Учебно- методическое и ресурсное обеспечение дисциплины (п. 6.1, 6.2, 6.3)	Домашнее задание
6.	Основы нелинейной оптики.	1.Оптические гармоники. 2. Самофокусировк а света. 3.Многофотонные процессы.	7	Работа с литературой, сетью Интернет, консультаци и, практически	Учебно- методическое и ресурсное обеспечение дисциплины (п. 6.1, 6.2, 6.3)	Доклад, презентац ия

		е задания,	
		подготовка к	
		выполнению	
		лабораторны	
		х работ	
		подготовка,	
		докладов и	
		презентаций	
Итого	34		

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код и наименование компетенции	Этапы формирования
ОПК-2. Способен проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять	<u> </u>
экспериментальные данные.	

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оценивае	Уровень	Этапы	Описание	Критерии	Шкала
мые	сформиров	формирования	показателей	оцениван	оценив
компетен	анности			ия	ания
ции					
ОПК-2	Пороговый	1. Работа на	Знать: методы	Лаборато	Шкала
		учебных	планирования и	рные	оценив
		занятия.	осуществления учебного	работы,	ания
		2.	эксперимента, оценки	решение	лабора
		Самостоятельная	результатов	задач,	торных
		работа.	эксперимента,	доклад.	работ
			подготовки отчетных		Шкала
			материалов в рамках		оценив
			изучаемой дисциплины		ания
			при работе в группах.		решени
			Уметь: грамотно		я задач
			планировать и		Шкала
			осуществлять учебный		оценив
			эксперимент, проводить		ания
			оценку его результатов,		доклад
			подготавливать отчетные		a
			материалы в рамках		
			изучаемой дисциплины		
			при работе в группах.		
	Продвинут	1. Работа на	Знать: методы	Лаборато	Шкала
	ый	учебных	планирования и	рные	оценив
		занятия.	осуществления учебного	работы,	ания
		2.	эксперимента, оценки	решение	лабора
		Самостоятельная	результатов	задач,	торных

работа.	эксперимента,	доклад,	работ
	подготовки отчетных	практичес	Шкала
	материалов в рамках	кая	оценив
	изучаемой дисциплины	подготовк	ания
	при работе в группах.	a	решени
	Уметь: грамотно		я задач
	планировать и		Шкала
	осуществлять учебный		оценив
	эксперимент, проводить		ания
	оценку его результатов,		доклад
	подготавливать отчетные		a
	материалы в рамках		Шкала
	изучаемой дисциплины		оценив
	при работе в группах.		ания
	Владеть:		практи
	организационно-		ческой
	управленческими		подгот
	навыками при работе в		овки
	научных группах и		
	других малых		
	коллективах		
	исполнителей.		

Шкала и критерии оценивания написания доклада

Уровни оценивания	Критерии оценивания	Баллы
Высокий (отлично)	Если студент отобразил в докладе 71-90% выбранной	8-10
Высокии (отлично)	темы.	
Оптимальный (хорошо)	Если студент отобразил в докладе 51-70% выбранной	5-7
Оптимальный (хорошо)	темы	
Удовлетворительный	Если студент отобразил в докладе 31-50% выбранной	2-4
э довлетворительный	темы	
Неудовлетворительный	Если студент отобразил в докладе 0-30% выбранной	0-1
псудовлетворительный	темы	

Шкала и критерии оценивания решения задач

	1	
Уровни оценивания	Критерии оценивания	Баллы
Высокий (отлично)	Если студент решил 71-90% от всех задач	8-10
Оптимальный (хорошо)	Если студент решил 51-70% от всех задач	5-7
Удовлетворительный	Если студент решил 31-50% от всех задач	2-4
Неудовлетворительный	Если студент решил 0-30% от всех задач	0-1

Шкала и критерии оценивания лабораторных работ

Уровни оценивания	Критерии оценивания	Баллы
Высокий (отлично)	Если студент отобразил в презентации 71-90% лабораторных работ.	8-10
Оптимальный (хорошо)	Если студент отобразил в презентации 51-70% лабораторных работ	5-7
Удовлетворительный	Если студент отобразил в презентации 31-50% лабораторных работ	2-4
Неудовлетворительный	Если студент отобразил в презентации 0-30%	0-1

Шкала оценивания практической подготовки

Критерии оценивания	
высокая активность на практической подготовке, выполнил всю лабораторную работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально смонтировал необходимое оборудование, все опыты провел в условиях и режимах, обеспечивающих получение правильных результатов и выводов; в отчете правильно и аккуратно выполнил все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполнил анализ погрешностей	8-10
средняя активность на практической подготовке, были выполнены требования к оценке «отлично», но обучающийся допустил неточности	
низкая активность на практической подготовке, в ходе проведения опыта и измерений были допущены ошибки.	
результаты работы не позволяют сделать правильных выводов или работа совсем не выполнена	

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерные задачи для решения задач

В серии Лаймана спектра водорода согласно модели Бора частота кванта является наименьшей для перехода:

- 1) $n=2 \rightarrow n=1$
- 2) $n=3 \rightarrow n=2$
- 3) $n=5 \rightarrow n=1$
- 2. Если известно, что кинетическая энергия электрона равна 100 эВ, то его дебройлевская длина волны составляет:
 - 1) 1,23·10⁻¹⁰ м
 - 2) $6,62\cdot10^{-20}$ M
 - 3) $1,23\cdot10^{-6}$ M
- 3. Длина волны K_{α} в характеристическом спектре молибдена (Z = 42, постоянная Ридберга $R = 1,09 \cdot 10^7 \text{ 1/м}$) составляет:
 - 1) $7.28 \cdot 10^{-11}$ M

 - 2) 5,5·10⁻¹⁰ M 3) 7,28·10⁻¹⁵ M

Примерные варианты лабораторных работ:

Тема занятия	Ауд. занятия	Самостоятельная работа Вопросы к защите
Работа № 1. Исследование	Выполнение	1.Каким образом возбуждаются
атомарного спектра водорода.	лабораторной	линейчатые спектры водорода?
	работы	2. Устройство спектроскопа и
		монохроматора; начертить ход лучей
		в этих приборах.
		3. Как объяснить появление слабых
		полос в спектре излучения
		водородной трубки?

		_
		4.Почему призма в спектроскопе
		устанавливается под наименьшим
		углом отклонения? Когда
		целесообразна такая установка?
		5.Почему изображения спектральных
		линий искривлены?
Работа № 2. Исследование	Выполнение	1. Какими квантовыми числами
стационарных состояний атома	лабораторной	определяются состояния электронов
гелия.	работы	в многоэлектронных атомах?
		2.В чем различие между орто - и
		парагелием?
		3. Какие физические процессы
		происходят в баллоне при
		проведении опытов Франка-Герца?
		4.Для чего в опытах Франка-Герца
		между анодом и сеткой создается
		небольшое тормозящее поле?
Работа № 5. Соотношение	Выполнение	1.Соотношение неопределенностей и
неопределенностей.	лабораторной	его физический смысл.
	работы	2. Экспериментальная проверка
		соотношения неопределенностей.
Работа № 6. Изучение лазерного	Выполнение	1. Что такое вынужденное излучение?
излучения.	лабораторной	2. Какие особенности имеет
	работы	вынужденное излучение по
		сравнению со спонтанным
		излучением?
		3. Каким образом возбуждается
		непрерывное лазерное излучение в
		гелий-неоновом лазере?
		4. Как устроен лазер?

Примерные задачи к защите лабораторных работ:

- 1. Вычислить дебройлевскую длину волны электрона и протона, движущихся с кинетической энергией 1 кэВ. При каких значениях кинетической энергии их длина волны будет равна 100 пм?
- 2. Какую энергию необходимо дополнительно сообщить электрону, чтобы его дебройлевская длина волны уменьшилась от 100 до 50 пм?
- 3. Вычислить по модели Томсона радиус атома водорода и длину волны излучаемого им света, если известно, что энергия ионизации E=13.6 эВ.
- 4. Альфа-частица с кинетической энергией 0,27 МэВ рассеялась золотой фольгой на угол 60°. Найти соответствующее значение прицельного параметра.
- 5. Покоящееся ядро атома урана испытывает лобовое соударение с налетающим протоном, скорость которого вдали от ядра равна 2,25•109 см/с. На какое минимальное расстояние сблизятся частипы?

Примерные темы докладов

- 1. Атом водорода в квантовой механике.
- 2. Испускание и поглощение света атомами. Спонтанное и вынужденное излучение. Лазер: устройство и применения.
- 3. Электропроводность металлов и полупроводников. Сверхпроводимость.
- 4. Физические основы детекторов частиц и радиоактивных излучений.
- 5. Энергия связи и дефект массы.
- 6. Закономерности ядерных реакций (цепная реакция, термоядерная реакция). Ядерная энергетика. Реакторы, атомная бомба.

7. Фундаментальные взаимодействия. Взаимодействия элементарных частиц, диаграмма Фейнмана

Задания для практической подготовки

- 1. Основные законы внешнего фотоэффекта (уравнение Эйнштейна, красная граница). Особенности вольтамперной характеристики.
- 2. Работа выхода: причины ее существования.
- 3. Фотоэлектронные приборы, их устройство, характеристика, применение.

Примерные вопросы к зачету:

- 1. Волновые свойства частиц. Соотношение неопределенностей.
- 2. Понятие о спектрах. Спектры излучения и поглощения (сплошные, полосатые линейчатые).
- 3. Модель атома Бора-Резерфорда. Постулаты Бора. Энергетические уровни водородоподобных ионов.
- 4. Опыты Резерфорда по рассеянию α частиц. Формула Резерфорда.
- 5. Опыты Франка и Герца.
- 6. Уравнение Шредингера. Физический смысл волновой функции.
- 7. Атом водорода в квантовой механике.
- 8. Частица в потенциальной яме. Энергетические уровни.
- 9. Спин и магнитный момент электрона.
- 10. Опыты Штерна и Герлаха.
- 11. Многоэлектронные атомы. Квантовые числа L, S, J.
- 12. Векторная модель атома. Спин и магнитный момент атома.
- 13. Квантовые числа n, l, m_l, s, m_s .

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Сопоставимость рейтинговых показателей студента по разным дисциплинам и балльнорейтинговой системы оценки успеваемости студентов обеспечивается принятием единого механизма оценки знаний студентов, выраженного в баллах, согласно которому 100 баллов – это полное усвоение знаний по учебной дисциплине, соответствующее требованиям учебной программы.

Максимальный результат, который может быть достигнут студентом по каждому из Блоков рейтинговой оценки — 100 баллов.

В зачетно-экзаменационную ведомость и зачетную книжку выставляются оценки по пятибалльной шкале и рейтинговые оценки в баллах.

При получении студентом на зачёте неудовлетворительной оценки в ведомость выставляется рейтинговая оценка в баллах (меньше 40 баллов), соответствующая фактическим знаниям (ответу) студента.

Критерии оценки знаний студентов в рамках каждой учебной дисциплины или групп дисциплин вырабатываются преподавателями согласованно на кафедрах университета исходя из требований образовательных стандартов.

Шкала оценивания зачета

Баллы	Критерии оценивания
	Обучающийся полно излагает материал, дает правильное определение основных
20	понятий; обнаруживает понимание материала, может обосновать свои суждения,
20	применить знания на практике, привести необходимые примеры не только из
	учебника, но и самостоятельно составленные.
14	Систематическое посещение занятий, участие в практических занятиях, единичные
	пропуски по уважительной причине и их отработка, изложение материала носит

Баллы	Критерии оценивания		
	преимущественно описательный характер, студент показал достаточно уверенное		
	владение материалом, однако недостаточное умение четко, аргументировано и		
	корректно отвечать на поставленные вопросы и отстаивать собственную точку		
	зрения.		
	Обучающийся обнаруживает знание и понимание основных положений данной		
	темы, но:		
7	- излагает материал неполно и допускает неточности в определении понятий или		
,	формулировке правил;		
	- не умеет достаточно глубоко и доказательно обосновать свои суждения и		
	привести свои примеры.		
	Обучающийся обнаруживает незнание большей части соответствующего вопроса,		
3	допускает ошибки в формулировке определений и правил, искажающие их смысл,		
	беспорядочно и неуверенно излагает материал.		

Итоговая шкала выставления оценки по дисциплине

Оценка	Балл
Зачтено	41-100
Не зачтено	0-40

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ 6.1. Основная литература

- 1. Васильчикова, Е.Н. Атомная физика: лаб. практикум для физ.-мат. фак. / Е. Н. Васильчикова, Н. И. Кошкин. М.: МГОУ, 2008. 35с. Текст: непосредственный.
- 2. Савельев, И. В. Курс общей физики: учебное пособие: в 5 томах / И. В. Савельев. 5-е изд. Санкт-Петербург: Лань, 2022 Том 5: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц 2022. 384 с. ISBN 978-5-8114-1211-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/210611 (дата обращения: 22.03.2024). Режим доступа: для авториз. пользователей.
- 3. Иродов, И.Е. Квантовая физика: основные законы / И. Е. Иродов. 5-е изд. стереотип. М.: Бином, 2013. 256c. Текст: непосредственный.
- 4. Иродов, И. Е. Квантовая физика. Основные законы : учебное пособие / И. Е. Иродов. 8-е изд. Москва : Лаборатория знаний, 2021. 261 с. Систем. требования: Adobe Reader XI ; экран 10". ISBN 978-5-93208-517-2. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785932085172.html (дата обращения: 22.03.2024). Режим доступа : по подписке.
- 5. Иродов, И.Е. Задачи по квантовой физике: учеб. пособие для вузов / И. Е. Иродов. М.: Высш. шк., 1991. 175с. Текст: непосредственный.
- 6. Иродов, И. Е. Задачи по квантовой физике / Иродов И. Е. 6-е изд. Москва : Лаборатория знаний, 2020. 220 с. Систем. требования: Adobe Reader XI ; экран 10. (Технический университет. Общая физика) ISBN 978-5-00101-685-4. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785001016854.html (дата обращения: 22.03.2024). Режим доступа : по подписке.
- 7. Акоста, В. Основы современной физики / В. Акоста, К. Кован, Б. Грэм. М.: Просвещение, 1981. 495с. Текст: непосредственный.

6.2. Дополнительная литература

- 1. Башлачев, Ю.А. Фундаментальные эксперименты физики: курс лекций / Ю. А. Башлачев, Д. Л. Богданов. М.: ЛЕНАНД, 2012. 240с.- Текст: непосредственный.
 - 2. Борн, М. Атомная физика / М. Борн; Медведев Б. В., ред. Изд-е 3-е; Перевод с англ. -

Москва: Мир, 1970. - 481с. – Текст: непосредственный.

- 3. Горлач, В. В. Физика: квантовая физика. Лабораторный практикум: учебное пособие для вузов / В. В. Горлач. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2023. 114 с. (Высшее образование). ISBN 978-5-534-10137-9. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/513821 (дата обращения: 22.03.2024).
- 4. Практикум по решению задач по общему курсу физики. Основы квантовой физики. Строение вещества. Атомная и ядерная физика : учебное пособие / Н. П. Калашников, Н. М. Кожевников, Т. В. Котырло, Г. Г. Спирин. Санкт-Петербург : Лань, 2022. 240 с. ISBN 978-5-8114-1651-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/211592 (дата обращения: 22.03.2024). Режим доступа: для авториз. пользователей.
- 5. Савельев, И. В. Курс общей физики. В 3-х тт. Том 3. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц / И. В. Савельев. 14-е изд., стер. Санкт-Петербург: Лань, 2023. 320 с. ISBN 978-5-507-47045-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/322505 (дата обращения: 22.03.2024). Режим доступа: для авториз. пользователей.
- 6. Сивухин, Д.В. Общий курс физики. Атомная и ядерная физика. Том 5. Атомная и ядерная физика [Электронный ресурс]: Учеб. пособие для вузов / Сивухин Д. В. 3-е изд., стер. М: ФИЗМАТЛИТ, 2008. http://www.studentlibrary.ru/book/ISBN9785922106450.html. (дата обращения: 16.07.2019). Режим доступа: для авториз. пользователей Электронно-библиотечная система «Консультант студента» Текст: электронный.
- 7. Шпольский, Э. В. Атомная физика: учебник: в 2 томах / Э. В. Шпольский. 8-е изд., стер. Санкт-Петербург: Лань, 2022 Том 1: Введение в атомную физику 2022. 560 с. ISBN 978-5-8114-1005-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/210398 (дата обращения: 22.03.2024). Режим доступа: для авториз. пользователей.
- 8. Шпольский, Э. В. Атомная физика: учебник: в 2 томах / Э. В. Шпольский. 6-е изд, стер. Санкт-Петербург: Лань, 2022 Том 2: Основы квантовой механики и строение электронной оболочки атома 2022. 448 с. ISBN 978-5-8114-1006-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/210401 (дата обращения: 22.03.2024). Режим доступа: для авториз. пользователей.
- 9. Шпольский, Э.В. Атомная физика: учеб. пособие для вузов. т. 2: основы квантовой механики и строение электронной оболочки атома / Э. В. Шпольский. 4-е изд.,перераб. М.: Наука, 1974. 447с. Текст: непосредственный.
- 10. Шпольский, Э.В. Атомная физика: учеб. пособие для вузов. т.1: введение в атомную физику / Э. В. Шпольский. 6-е изд., испр. М.: Наука, 1974. 575с. Текст: непосредственный.

6.3. Ресурсы информационно-телекоммуникационной сети «Интернет»

- 1. http://mgou.ru/index.php?option=com_content&task=view&id=48&Itemid=614
- 2. Научная электронная библиотека http://elibrary.ru

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

- 1. Методические рекомендации по подготовке к практическим занятиям.
- 2. Методические рекомендации по организации самостоятельной работы по дисциплинам.

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows

Microsoft Office

Kaspersky Endpoint Security

Информационные справочные системы:

Система ГАРАНТ

Система «КонсультантПлюс»

Профессиональные базы данных

fgosvo.ru – Портал Федеральных государственных образовательных стандартов высшего образования

pravo.gov.ru - Официальный интернет-портал правовой информации

www.edu.ru – Федеральный портал Российское образование

Свободно распространяемое программное обеспечение, в том числе отечественного производства

ОМС Плеер (для воспроизведения Электронных Учебных Модулей)

7-zip

Google Chrome

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения учебных занятий, оснащенные оборудованием и техническими средствами обучения: учебной мебелью, доской, демонстрационным оборудованием, персональными компьютерами, проектором;
- помещения для самостоятельной работы, оснащенные компьютерной техникой с возможностью подключением к сети «Интернет» и обеспечением доступа к электронной информационно-образовательной среде.