Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Дата подписания: 08.09.2025 11:10:20

Уникальный программный ключ: МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

665279da4e034bff Седеральное учреждение высшего образования

«ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ» (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ)

Физико-математический факультет Кафедра высшей алгебры, математического анализа и геометрии

УТВЕРЖДЕН

на заседании

Зав. кафедрой

кафедры

высшей

алгебры,

математического анализа и геометрии

Протокол от «В» Мураря 2015 г., № 5

y

/Кондратьева Г.В/

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине (модулю)

Теория чисел

Направление подготовки (специальности) 44.03.01 Педагогическое образование Профиль (программа подготовки, специализация) Математика

Москва

2025

Содержание

1.	Перечень компетенций с указанием этапов их формирования в процессе освоения	
	образовательной программы	.3
2.	Описание показателей и критериев оценивания компетенций на различных этапах их	
	формирования, описание шкал оценивания	3
3.	Контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков	И
	(или) опыта деятельности, характеризующих этапы формирования компетенций в процессе	
	освоения образовательной программы	.6
4.	Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и	
	(или) опыта деятельности, характеризующих этапы формирования компетенций	19

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы 1

Код и наименование компетенции	Этапы формирования
УК — 1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	1.Работа на учебных занятиях 2.Самостоятельная работа
ПК – 1. Способен осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач	1.Работа на учебных занятиях 2.Самостоятельная работа

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания 2

Оценива	Уровень	Этапы	Описание показателей	Критерии	Шкала
емые	сформир	формирова		оцениван	оцениван
компете	ованнос	ния		ия	ия
нции	ТИ				
УК-1	Порогов	1.Работа на	Знать основы системного подхода	Практиче	Шкала
	ый	учебных	и основные приемы разрешения	ские	оценива
		занятиях	проблемных ситуаций	задания,	ния
		2.Самостоя	Уметь осуществлять критический	вопросы	практич
		тельная	анализ проблемных ситуаций на	для	еского
		работа	основе системного подхода,	разбора	задания
			вырабатывать стратегию действий	(опрос),	Шкала
			_	доклады	оценива
					ния
					опроса
					Шкала
					оцениван
					ия
					доклада
	Продвин	1.Работа на	Знать основы системного подхода	Практиче	Шкала
	утый	учебных	и основные приемы разрешения	ские	оценива
		занятиях	проблемных ситуаций	задания,	ния
		2.Самостоя	Уметь осуществлять критический	вопросы	практич
		тельная	анализ проблемных ситуаций на	для	еского
			-		задания

¹ Указывается информация в соответствии с утвержденной РПД

² Указывается информация в соответствии с утвержденной РПД

		работа	основе системного подхода, вырабатывать стратегию действий Владеть методами критического анализа проблемных ситуаций на основе системного подхода, способами разработки стратегии действий	разбора (опрос), доклады	Шкала оценива ния опроса Шкала оцениван ия доклада
ПК-1	Пороговый	1. Работа на учебных занятия х 2. Самостояте л ьная работа	Знать: содержание профессиональных задач, знать как осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач Уметь:пользоваться языком математики; вести информационно-аналитическую и информационно-библиографическую работу с привлечением современных технологий, логично и грамотно формулировать и высказывать свои мысли, аргументировать свою точку зрения	Практиче ские задания, вопросы для разбора, (опрос), доклады	Шкала оценива ния практич еского задания Шкала оценива ния опроса Шкала оцениван ия доклада
	винутый	1. Работа на учебных занятия х 2. Самостояте л ьная работа	Знать: содержание профессиональных задач, знать как осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач Уметь: пользоваться языком математики; вести информационно-аналитическую и информационно-библиографическую работу с привлечением современных технологий, логично и грамотно формулировать и высказывать свои	Практиче ские задания, вопросы для разбора, (опрос), доклады	Шкала оценива ния практич еского задания Шкала оценива ния опроса Шкала оцениван ия доклада

мысли, аргументировать свою точку зрения, адаптировать результаты изучения понятий и фактов алгебры и теории чисел к школьному образовательному процессу	
Владеть: научным стилем изложения содержания, навыками поиска, сбора, систематизации и использования информации, методами и приемами устного и письменного изложения предметного материала	

Шкала оценивания доклада

Критерий оценивания	Баллы
Материал изложен последовательно и грамотно, сделаны необходимые обобщения и выводы	16-20
Материал изложен последовательно и грамотно, сделаны необходимые обобщения и выводы, но допущены несущественные неточности, исправленные самим студентом.	11-15
Материал изложен неполно, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения материала, или имелись затруднения, или допущены ошибки в определении понятий, использовании терминологии, исправленные после замечаний преподавателя, при этом студент делает необходимые обобщения и выводы	9-10
Не раскрыто основное содержание учебного материала, студент демонстрирует незнание или непонимание большей или наиболее важной части учебного материала, допускает ошибки в определении понятий, при использовании терминологии, которые им не исправляются после нескольких замечаний преподавателя	0-5

Шкала оценивания практического задания

Показатель	Баллы
Выполнено до 40% заданий	1-3

Выполнено 41-60% заданий	4-5
Выполнено 61-80% заданий	6-7
Выполнено более 81% заданий	8-10

Шкала оценивания устного опроса

Критерий оценивания	Баллы
Материал изложен последовательно и грамотно, сделаны необходимые обобщения и выводы	5
Материал изложен последовательно и грамотно, сделаны необходимые обобщения и выводы, но допущены несущественные неточности, исправленные самим студентом.	4
Материал изложен неполно, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения материала, или имелись затруднения, или допущены ошибки в определении понятий, использовании терминологии, исправленные после замечаний преподавателя, при этом студент делает необходимые обобщения и выводы	3
Не раскрыто основное содержание учебного материала, студент демонстрирует незнание или непонимание большей или наиболее важной части учебного материала, допускает ошибки в определении понятий, при использовании терминологии, которые им не исправляются после нескольких замечаний преподавателя	2

3. Контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

УК – 1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

Знать: основы системного подхода и основные приемы разрешения проблемных ситуаций.

- 1. Сформулируйте основную теорему арифметики.
- 2. Что означают символы n!, (2n-1)!, (2n-1)!, (2n)!, (2n)!?
- 3. Множество простых чисел конечно или бесконечно. Ответ обосновать.
- 4. Сумма первых n простых чисел чётно, если n есть , и нечётно, если n есть .
- 5. Верно ли, что функция $f(n) = n^2 n + 41$ генерирует простые числа при любом n?
- 6. Покажите, что существует единственное решение диофантова уравнения $x^2 + y^2 + z^2 2(2x + 3y + 5z) + 39 = 0$ в взаимно простых числах и найдите их.

7. Найдите все решения диофантово уравнения $x^2 + y^2 = 5$ в целых числах.

Уметь: осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий.

- 1. Покажите, что каждое составное число имеет хотя бы один простой делитель.
- 2. Покажите, что если $D = \{p_1, p_2, ..., p_n\}$ множество всех различных простых делителей числа

$$a \in \mathbb{N}$$
, то разложение $a = \prod_{k=1}^{n} p_n$ единственно.

- 3. Верно ли, что каждое составное число имеет не меньше двух простых делителей?
- 4. По алгоритму Эратосфена найдите все простые числа до n = 150.
- 5. Покажите, что единственным решением системы линейных алгебраических уравнений

$$\begin{cases} 2x_1 + & 3x_2 + & 7x_3 = 12 \\ -2x_1 - & 3x_2 + & 7x_3 = 2 \end{cases}$$
 является тройка взаимно простых чисел.
$$2x_1 - & 3x_2 + & 7x_3 = 6 \end{cases}$$

- 6. Найдите трёхпараметрическое семейство решений диофантово уравнения $x^2 + y^2 + z^2 2(ax + by + cz) + a^2 + b^2 + c^2 = 0$ в целых числах.
- 7. Найдите все решения диофантово уравнения $x^2 + y^2 = 9$ в целых числах.

Владеть: методами критического анализа проблемных ситуаций на основе системного подхода, способами разработки стратегиидействий.

- 1. При каких натуральных значениях n число $\frac{4n+3}{5n+2}$ является целым?
- 2. Указать наибольшее целое число k, при котором дробь $\frac{12k^2 + 5k + 6}{4k + 3}$ является целым числом.
- 3. Доказать, что $2010^{2010} 1$ делится на 2009.
- 4. Доказать, что число $222^{333} + 333^{222}$ является составным.
- 5. Пусть p простое число, большее 3. Доказать, что $p^2 1$ делится нацело на 24.
- 6. Найдите все натуральные числа n, при которых $n^2 + 3n + 5$ делится без остатка на 121.
- 7. Найдется ли десятизначное число, делящееся на 11, в записи которого использованы все цифры от 0 до 9?
- 8. Произведение двух натуральных чисел равно 10800, а их наибольший общий делитель равен 60. Найти наименьшее общее кратное этих чисел.
- 9. Найти все пары натуральных чисел, наибольший общий делитель которых равен 5, а наименьшее общее кратное равно 105.
- 10. Найти два натуральных числа, сумма которых равна 85, а наименьшее общее кратное равно 102.

Темы и вопросы для опроса на учебных занятиях

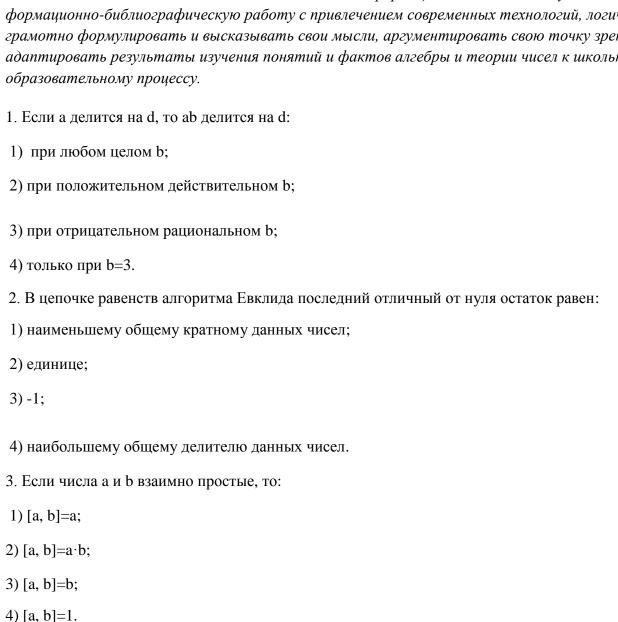
- 1. Дайте определение линейного сравнения с одним неизвестным.
- 2. Перечислите методы решения сравнения с одним неизвестным.
- 3. Как решаются сравнения по простому модулю р?
- 4. Как решаются сравнения по произвольному составному модулю.
- 5. Сформулируйте китайскую теорему об остатках.
- 6. Приведите примеры ее использования.
- 7. Сформулируйте теорему Эйлера.
- 8. Сформулируйте малую теорему Ферма.
- 9. Дайте определение подходящих дробей.
- 10. Перечислите нерешенные проблемы простых чисел.

Темы докладов

- 1. Кольцо классов вычетов по простому модулю.
- 2. Вариации на тему малой теоремы Ферма.
- 3. Квадратичные вычеты. Символ Лежандра.
- 4. Порядки вычетов и их свойства.
- 5. Первообразные корни и вычеты.
- 6. Символ Якоби.
- 7. Кольцо делимых чисел Гаусса.

ПК – 1. Способен осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач

Знать: содержание профессиональных задач, знать как осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач.


Задания

- 1. Какое из чисел 5,6,7 и 31 является делителем числа 93?
- 1) 5
- 2) 6
- 3) 7
- 4) 31
- 2. Какое из чисел 2, 6,24 и 50 является кратным числа 12?
- 1) 2
- 2) 6

3) 244) 503. Верно ли высказывание: сумма двух натуральных чисел кратна каждому из слагаемых?
 да; нет.
4. Вставить пропущенные слова, числа, фразы.
1) Делителем натурального числа a называют натуральное число,
2) Любое натуральное число имеет кратных.
3) Наименьшим из кратных любого натурального числа является
4) Число называется четным, если оно
5) Цифры называются нечетными.
6) Четное число, кратное 5, оканчивается цифрой
7) Если в записи число ***252 вместо звездочек поставить цифру, то полученное числе будет кратно 9.
8) Натуральное число называют простым, если
9) Натуральное число, называют наибольшим общим делителем этих чисел.
10) Числа 2, 5 и взаимно простые.
11) Если $a = 2 \cdot 3 \cdot 5$ и $e = 3 \cdot 5 \cdot 7$, то наименьшее общее кратное этих чисел равно
12) Наименьшее общее кратное двух чисел не может быть меньше
13) Наибольший общий делитель чисел 120 и 240 равен
14) Сумма нескольких натуральных чисел среднему арифметическому этих чисел, если оно является натуральным числом.
15) Сумма двух простых чисел, каждое из которых больше двух, всегда
5. Если а делится на с, b не делится на с, то:
1) а+в делится на с;
2) а+b не делится на с;
3) а+b может делится на с, а может не делится на с;

- 4) а-b делится на с.
- 6. Найдите все простые числа между числами 150 и 300.

Уметь: пользоваться языком математики; вести информационно-аналитическую и информационно-библиографическую работу с привлечением современных технологий, логично и грамотно формулировать и высказывать свои мысли, аргументировать свою точку зрения, адаптировать результаты изучения понятий и фактов алгебры и теории чисел к школьному

- 4. Найдите все простые числа между числами 1300 и 1350.
- 5. Докажите, что сумма n первых натуральных чисел 1+2+...+n делится на 2 без остатка.
- 6. Докажите, что сумма квадратов n первых натуральных чисел $1^2 + 2^2 + ... + n^2$ делится на 2 и на 3 без остатка.

- 7. Найти HOJI(6, 8, 15) используя каноническое разложение составного числа на простые множители.
- 8. Докажите, что диофантово уравнение $x^3 + (x+1)^3 + (x+2)^3 = (x+3)^3$ имеет единственное решение x = 3.
- 9. Найдите все решения диофантово уравнения $x^2 + y^2 + z^2 = 1$ в целых числах. Полученным решениям дайте геометрическую интерпретацию.
- 10. Докажите высказывание: $\forall n \in \mathbb{N} \Big[((2n-1)^2 1) : 4 \Big].$

Владеть: научным стилем изложения содержания, навыками поиска, сбора, систематизации и использования информации, методами и приемами устного и письменного изложения предметного материала.

- 1. Перечислите основные свойства делимости целых чисел.
- 2. Дайте определения НОД и НОК.
- 3. Опишите алгоритм Евклида.
- 4. Какова связь между НОД и НОК двух чисел?
- 5. Дайте определение простых и составных чисел.
- 6. Сформулируйте основную теорему арифметики.
- 7. Что называется каноническим разложением натурального числа.
- 8. Какие числовые функции вы знаете?
- 9. Какова их роль в теории чисел?
- 10. Какие функции называются мультипликативными?
 - 11. Дайте определение вычетов по модулю.
 - 12. Как строится кольцо классов вычетов по модулю?
 - 13. В каких случаях мы получаем поле?
 - 14. Что такое характеристика поля?
 - 15. Сформулируйте первую теорему о вычетах линейной формы.
 - 16. Дайте определение функции Эйлера.
 - 17. Что называется приведенной системой вычетов?
 - 18. Сформулируйте вторую теорему о вычетах линейной формы.
 - 19. Дайте определение числового сравнение по натуральному модулю.
 - 20. Перечислите основные свойства числовых сравнений.

Темы докладов

- 1. Занимательные дроби.
- 2. Решение уравнений в целых числах.
- 3. Сложность вычислений в кольце вычетов.
- 4. Представление чисел квадратичными формами.
- 5. Сравнения второй степени.
- 6. Криптосистема RSA.
- 7. Теорема Эйлера.
- 8. Сложность арифметических операций с целыми числами.

Вопросы к экзаменам

1 курс, 1 семестр

Вопросы

- 1. Матрицы над полем. Операция сложения матриц. Свойства операции сложения.
- 2. Умножение матриц на действительное число. Свойства этой операции.
- 3. Умножение матриц. Свойства этой операции (ассоциативность, некоммутативность, нейтральный элемент). Обратные матрицы.
- 4. Транспонирование матриц, транспонирование произведения матриц.
- 5. Квадратные матрицы. Единичная матрица. Обратные и обратимые матрицы.
- 6. Определитель квадратной матрицы. Определитель 2,3 порядков. Определитель n-го порядка.
- 7. Алгебраические дополнения и миноры элемента определителя.
- 8. Теорема о разложении определителя по элементам строки (столбца).
- 9. Свойства определителя. Необходимые и достаточные условия равенства нулю определителя. Определитель треугольного вида.
- 10. Вычисление обратной матрицы при помощи алгебраических дополнений.
- 11. Простейшие матричные уравнения, их решение.
- 12. Системы линейных уравнений (СЛУ). Решения СЛУ. Равносильные СЛУ.
- 13. Однородные и неоднородные СЛУ, свойства их решений.
- 14. Элементарные преобразования СЛУ. Равносильность СЛУ при элементарных преобразованиях.
- 15. Элементарные преобразования матриц.
- 16. Ступенчатые системы линейных уравнений. Приведение СЛУ к ступенчатому виду.
- 17. Матрицы, соответствующие СЛУ. Элементарные преобразования матриц. Ступенчатые матрицы. Ранг матрицы. Ранг СЛУ.
- 18. Теорема о числе решений систем линейных уравнений. Метод Гаусса решения систем линейных уравнений. Общие и частные решения систем линейных уравнений.
- 19. Запись и решение системы n линейных уравнений с n неизвестными в матричной форме.
- 20. Правило Крамера решения системы n линейных уравнений с n неизвестными.

1 курс, 2 семестр

Вопросы

- 1. Алгебраическая операция на множестве, примеры. Свойства бинарной алгебраической операции.
- 2. Группа. Примеры групп. Простейшие свойства группы.
- 3. Кольцо. Примеры колец. Простейшие свойства кольца.
- 4. Поле. Примеры полей. Его простейшие свойства.
- 5. Подгруппа. Необходимое и достаточное условие того, чтобы некоторое подмножество группы являлось ее подгруппой.

- 6. Подкольцо. Необходимое и достаточное условие того, чтобы некоторое подмножество кольца являлось его подкольцом.
- 7. Подполе. Необходимое и достаточное условие того, чтобы некоторое подмножество поля являлось его подполем.
- 8. Кольцо целых чисел. Делимость в кольце целых чисел.
- 9. Деление с остатком в кольце целых чисел.
- 10. Наибольший общий делитель целых чисел. Алгоритм Евклида.
- 11. Линейное выражение НОД.
- 12. Наименьшее общее кратное целых чисел.
- 13. Простые и составные числа.
- 14. Разложение целого числа в произведение простых чисел.
- 15. Поле комплексных чисел как расширение поля действительных чисел.
- 16. Алгебраическая форма комплексных чисел, операции с ними.
- 17. Геометрическое представление комплексных чисел и операций над ними.
- 18. Тригонометрическая форма комплексного числа.
- 19. Корни из комплексных чисел.
- 20. Корни n-й степени из единицы.
- 21. Решение двучленных уравнений.

2 курс, 3 семестр

Вопросы

- 1. Построение кольца многочленов от одной переменной над полем действительных чисел.
- 2. Теория делимости в кольце многочленов от одной переменной над полем действительных чисел.
- 3. Теорема о делении с остатком.
- 4. Деление многочлена на двучлен *х-а* и корни многочлена.
- 5. Теорема Безу. Кратные корни. Наибольшее возможное число корней многочлена.
- 6. Наибольший общий делитель многочленов над полем. Алгоритм Евклида.
- 7. Наименьшее общее кратное многочленов.
- 8. Неприводимые и приводимые над полем действительных чисел многочлены, их свойства.
- 9. Разложение многочлена в произведение нормированных неприводимых множителей и его единственность.
- 10. Каноническая форма записи многочлена. Нахождение НОД и НОК многочленов.
- 11. Простое и составное расширение поля.
- 12. Алгебраические и трансцендентные элементы над полем.
- 13. Минимальный многочлен алгебраического над полем элемента.
- 14. Строение простого алгебраического расширения поля. Избавление от иррациональности.

2 курс, 4 семестр

Вопросы

- 1. Кольцо многочленов от одной переменной над полем действительных чисел.
- 2. Делимость в кольце многочленов от одной переменной над полем действительных чисел.
- 3. Теорема о делении с остатком в кольце многочленов от одной переменной над полем

- действительных чисел.
- 4. Деление многочлена на двучлен *х-а* и корни многочлена.
- 5. Теорема Безу. Кратные корни. Наибольшее возможное число корней многочлена.
- 6. Наибольший общий делитель многочленов над полем. Алгоритм Евклида.
- 7. Линейное выражение наибольшего общего делителя многочленов над полем
- 8. Наименьшее общее кратное многочленов. Связь НОД и НОК.
- 9. Неприводимые и приводимые над полем действительных чисел многочлены, их свойства.
- 10. Разложение многочлена в произведение многочленов, неприводимых над данным полем
- 11. Каноническая форма записи многочленов. НОД и НОК в канонической форме.
- 12. Расширения полей. Строение простого расширения поля. Минимальный многочлен алгебраического над полем элемента.
- 13. Строение простого алгебраического расширения поля.
- 14. Многочлены от n переменных и действия над ними. Степень многочлена от n переменных.
- 15. Кольцо многочленов от n переменных над областью целостности. Лексикографическое упорядочение членов многочлена от n переменных. Высший член произведения двух многочленов.
- 16. .Симметрические многочлены. Свойства высшего члена симметрического многочлена
- 17. Основная теорема о симметрических многочленах и следствие из нее.
- 18. Многочлены от одной переменной над полем комплексных чисел. Основная теорема алгебры.
- 19. Алгебраическая замкнутость полей. Алгебраическая замкнутость поля комплексных чисел.
- 20. Разложение многочлена над полем комплексных чисел в произведение неприводимых множителей
- 21. Решение уравнений третьей степени над полем комплексных чисел .
- 22. Решение уравнений четвертой степени над полем комплексных чисел
- 23. Корни многочлена над полем действительных чисел. Сопряженность мнимых корней многочлена с действительными коэффициентами.
- 24. Разложение многочлена над полем действительных чисел в произведение неприводимых множителей.
- 25. Целые и рациональные корни многочлена с целыми коэффициентами.
- 26. Необходимый признак рационального корня многочлена с целыми коэффициентами.
- 27. Критерий неприводимости многочленов над полем рациональных чисел (Эйзенштейна).
- 28. Понятие разрешимости уравнения в радикалах. Условия разрешимости уравнения третьей степени в квадратных радикалах.
- 29. Примеры геометрических задач, сводящихся к уравнениям, неразрешимым в квадратных радикалах.

Задания для контроля знаний на семестровом экзамене

1 курс, 2 семестр

Задания

1. При помощи Алгоритма Евклида найдите наибольший общий делитель HOД(a, b) целых чисел a = 1015 и b = 638 и его линейное выражение через эти числа.

- 2. Найдите каноническое представление целых чисел a = 1015 и b = 638 и их наибольший общий делитель $HO\mathcal{L}(a,b)$ и наименьшее общее кратное HOK(a,b).
- 3. При помощи Алгоритма Евклида найдите наибольший общий делитель $HO\mathcal{L}(a,b)$ целых чисел a=1015, b=638 и его линейное выражение через эти числа.
- 4. Найдите каноническое представление целых чисел a = 1015, b = 638 и их наибольший общий делитель HOД(a, b) и наименьшее общее кратное HOK(a, b).
- 5. Докажите, что если n = 65q + 56, то число $4n^2 + 1$ делится на 5 и на 13.
- 6. Докажите, что сумма квадратов двух последовательных натуральных чисел при делении на 4 даёт остаток 1.
- **7.** Найти все натуральные числа n, для которых число $n^2 + 1$ делится на n + 1.
- 8. Найти все целые числа $x \neq 3$, такие, что $(x^3 3)$:(x 3).
- 9. Докажите, что $((a^3 + b^3 + c^3):3) \Rightarrow ((a+b+c)^3:3)$.
- 10. Докажите, что для всех $n \in \square$ n(n+1)(2n+1): 6.

2 курс, 3 семестр

Задания

- 1. Доказать, что сумма квадратов двух нечётных натуральных чисел не является квадратом натурального числа.
- 2. Доказать, что $((a^3 + b^3 + c^3):3) \Rightarrow ((a+b+c)^3:3)$.
- 3. Доказать, что $\forall n \in \mathbf{N} \lceil (3^{3n+3} 26n 27) : 169 \rceil$.
- 4. Докажите, что $\forall n \in \mathbb{N} \Big[(10^n 1) : 9 \Big].$
- 5. Доказать высказывание $\forall n \in \mathbb{N} \Big[\Big((2n-1)^2 1 \Big) : 4 \Big].$
- 6. Доказать высказывание $\forall n \in \mathbb{N} [(9^n 1):8].$
- 7. Доказать, что если $(a^2 + b^2)$:7, то a:7 и b:7.
- 8. Найти все простые числа между числами 1300 и 1350.
- 9. При помощи Алгоритма Евклида найдите наибольший общий делитель d целых чисел a = 1015, b = 638 и его линейное выражение через эти числа8.

10. Найдите каноническое представление целых чисел a = 1015 и b = 638 и их наибольший общий делитель d и наименьшее общее кратное m.

2 курс, 4 семестр

Задания

- 1. Найти линейное представление наибольшего общего делителя HOД(a, b).
- 2. Представить a в виде систематической дроби в системе с основанием b.

$$\begin{cases} (a+b)x \equiv a \pmod{c}, \\ (c+10)x \equiv -(c-2) \pmod{(c-3)}, \\ (a-3)x \equiv (a+c) \pmod{(b-6)}. \end{cases}$$

- 4. Найти две последние цифры в десятичном представлении числа a^b .
- 5. Вывести и сформулировать признак делимости на a в системе счисления с основанием b.
- 6. Представить a в виде цепной дроби, найти подходящие дроби.
- 7. Найлите остаток от деления a^b на c.
- 8. Решите уравнение ax by = c в целых числах.
- 9. Найдите сумму и число всех натуральных делителей числа $\,a.\,$
- 10. Найдите все решения уравнение $x^2 + y^2 = z^2$ в целых числах.
 - 4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций³

 $^{^{3}}$ Указывается информация в соответствии с утвержденной РПД

Итоговая оценка знаний, умений, способов деятельности студентов по изучаемой дисциплине составляет 100 баллов

Максимальное количество баллов, которое можно набрать за текущий контроль — 70 баллов.

За ответы на вопросы устного опроса обучающийся может набрать максимально 30 баллов.

За выполнение докладов обучающийся может набрать максимально 20 баллов.

За выполнение практических заданий обучающийся может набрать максимально - 20 баллов.

Максимальная сумма баллов, которые обучающийся может набрать при сдаче экзамена, составляет 30 баллов.

Для сдачи экзамена необходимо выполнить все задания текущего контроля. Значимым моментом является показатель изучения материала лекций и выполнение заданий в указанные сроки. На экзамен выносится материал, излагаемый в лекциях и рассматриваемый на практических занятиях.

1. Шкала оценивания ответов студентов на экзамене

I/	1. Шкала оценивания ответов студентов на экзамене
Количество	Критерии оценивания
баллов	
26-30	Если студент свободно ориентируется в теоретическом материале,
	знает формулировки основных определений, теорем и свойств, умеет
	применять теоретические сведения для решения типовых задач
15-25	Если студент недостаточно свободно ориентируется в
	теоретическом материале, ошибается при формулировании основных
	определений, теорем и свойств, умеет применять теоретические
	сведения для решения типовых задач (в зависимости от количества и
	степени имеющихся ошибок и недочётов).
8-14	Если студент плохо ориентируется в теоретическом материале, не
	знает некоторые формулировки основных определений, теорем и
	свойств, у студента возникают проблемы при применении
	теоретических сведений для решения типовых задач (в зависимости от
	количества и степени имеющихся ошибок и недочётов).
0-7	Если студент не ориентируется в теоретическом материале, не знает
	большинство формулировок основных определений, теорем и свойств и
	не умеет применять теоретические сведения для решения типовых задач
	(в зависимости от количества и степени имеющихся ошибок и
	недочётов).

2. Итоговая шкала оценивания результатов освоения дисциплины

Итоговая оценка по дисциплине формируется из суммы баллов по результатам текущего контроля и промежуточной аттестации и выставляется в соответствии с приведенной ниже таблицей.

Оценка по 100-балльной системе	Оценка по традиционной системе
81 – 100	Отлично
61 - 80	Хорошо
41 - 60	Удовлетворительно

0 40	**
$\Omega = A\Omega$	Не уловлетворительно
0 - 40	пе удовлетворительно