Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Дата подписания: 19.09.2025 1**МИН**ИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Уникальный программ фёдеральное государственное автономное образовательное учреждение высшего 6b5279da4e034bff679172803da5b7b559fc69e2 образования

«ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ» (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ)

Физико-математический факультет Кафедра профессионального и технологического образования

Согласовано

деканом физико-математического

факультета

факультета

«21» Сипремя 2025 г. / Кулетова Ю.Д./

Рабочая программа дисциплины

Химические и физико-химические методы анализа

Направление подготовки

44.03.04 Профессиональное обучение (по отраслям)

Профиль:

Педагог профессионального образования

Квалификация

Бакалавр

Форма обучения

Очная

Согласовано учебно-методической комиссией Рекомендовано кафедрой

физико-математического факультета

Протокол от «<u>6</u>» <u>Апреил</u> 2025 г. № <u>8</u>
Председатель УМКом / Кулемова Ю.Д.

профессионального и технологического

образования

Протокол от « 9 » мпрестя 2025 г. №/6 Зав. кафедрой //Корецкий М.Г./

Москва 2025

Автор-составитель:

Корецкий М.Г., кандидат педагогических наук, доцент, заведующий кафедрой профессионального и технологического образования Шпаков Н.П., кандидат педагогических наук, доцент кафедры профессионального и технологического образования

Рабочая программа дисциплины «Химические и физико-химические методы анализа» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 44.03.04 Профессиональное обучение (по отраслям), утвержденного приказом МИНОБРНАУКИ РОССИИ от 22.02.2018 № 124.

Дисциплина входит в «Модуль отраслевых дисциплин», в обязательную часть Блока 1 «Дисциплины (модули)» и является обязательной для изучения.

СОДЕРЖАНИЕ

1. Планируемые результаты обучения	4
2. Место дисциплины в структуре образовательной программы	4
3. Объем и содержание дисциплины	5
4. Учебно-методическое обеспечение самостоятельной работы обучающихся	6
5. Фонд оценочных средств для проведения текущей и промежуточной аттестации по дисциплине	9
6. Учебно-методическое и ресурсное обеспечение дисциплины	28
7. Методические указания по освоению дисциплины	30
8. Информационные технологии для осуществления образовательного процесса по дисциплине	30
9. Материально-техническое обеспечение дисциплины	30

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цели и задачи дисциплины

Цель дисциплины: формирование знаний основ современных методов физического, химического и физико-химического анализа, в приобретении навыков и умений определения качественного и количественного состава анализируемых объектов, интерпретации полученных результатов, навыков научно-исследовательской работы

Задачи дисциплины:

- углубление и систематизация физико- химических знаний, необходимых студентам для изучения других дисциплин профиля, а также ряда разделов физики, профессиональных дисциплин и дисциплин специализаций;
- овладение фундаментальными понятиями, законами и теориями в области физикохимического анализа, необходимых при решении проблем различного характера в области научных исследований и практической деятельности;
- формирование навыков в проведении физико-химического эксперимента, умение выделять конкретное содержание в прикладных задачах учебной и профессиональной деятельности;
- раскрытие роли и места химического, физического и физико-химического анализа в развитии научно- технического прогресса; определение роли отечественных и зарубежных ученых в развитии химических наук.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

УК-3. Способен осуществлять социальное взаимодействие и реализовывать свою роль в команде

ДПК - 4 - Способен организовывать проектную деятельность обучающихся в области технического творчества

ДПК-7. Способен разрабатывать и реализовывать образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в «Модуль отраслевых дисциплин», в обязательную часть Блока 1 «Дисциплины (модули)» и является обязательной для изучения.

Для освоения дисциплины «Химические и физико-химические методы анализа» студенты используют знания, умения и виды деятельности, сформированные в процессе изучения таких дисциплин, как «Технология конструкционных материалов», «Материаловедение», «Практикум по обработке конструкционных материалов».

Освоение дисциплины «Химические и физико-химические методы анализа» может быть полезно для самосовершенствования в профессиональной деятельности, внедрения новых технологий в культурно-просветительскую, научную и образовательную сферу, последующего изучения таких дисциплин как: «Технологии лазерной обработки материалов», «Сопротивление материалов», «Метаматериалы и новые композитные материалы» прохождения научно-педагогической и преддипломной практики, выполнения выпускной квалификационной работы.

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Показатель объема дисциплины	Форма обучения
	Очная
Объем дисциплины в зачетных единицах	3
Объем дисциплины в часах	108
Контактная работа:	72,6
Лекции	22
Практические занятия	48
Предэкзаменационная консультация	2
KATT	0,3
Экзамен	0,3
Самостоятельная работа	8
Контроль	27,4

Форма промежуточной аттестации: экзамен и курсовая работа в 4 семестре.

3.2. Содержание дисциплины

	Кол-во часов		
Наименование тем дисциплины с кратким содержанием	Лекции	Практические занятия	
		Общее кол-во часов	
Тема 1. Общая классификация физико- химических методов анализа. Количественный анализ и Титриметрия гравиметрия Введение и задачи дисциплины физико-химические	2	4	

	T	1
методы анализа. Значение химических, физических и физико- химических методов анализа в современной науке, промышленной и технике. Определение аналитического сигнала. Образец и проба. Качественный и количественный анализ. Интенсивные и экстенсивные свойства. Классификация ошибок и методы учета погрешностей. Общая классификация методов анализа. Химические (классические) методы анализа: понятие о гравиметрическом и титриметрическом анализе. Физико- химические (инструментальные) методы анализа		
Тема 2. Общие положения и теоретические основы оптических методов анализа. Электромагнитное излучение и его природа. Спектр электромагнитного излучения. Строение вещества и происхождение спектров. Строение атома и происхождение атомных спектров. Наблюдение и регистрация спектроскопических сигналов.	2	4
Тема 3. Молекулярная спектрометрия (абсорбционная спектрометрия). Другие спектральные методы анализа. Молекулярно- спектроскопические методы анализа. Наблюдение и регистрация спектроскопических сигналов. Приемники излучения. Закон светопоглощения — закон Бугера- Ламберта- Бера. Спектры поглощения. Правило аддитивности. Теоретические основы фотоэлектроколориметрии (ФЭК) спектрофотометрии	2	4
Тема 4. Общая характеристика спектроскопических (неоптических) методов анализа. Радиоспектроскопические методы анализа Электронный парамагнитный резонанс (ЭПР). Теоретические основы методов. Условие электронного парамагнитного резонанса. Дипольдипольное и контактное взаимодействие. Наблюдение сверхтонкой структуры (СТС). Спектр ЭПР. g- фактор — фактор спектроскопического расщепления. Расчет числа линий в спектре ЭПР. Наблюдение дополнительной сверхтонкой структуры (ДСТС). Правило аддитивности	2	6
Тема 5. Общая характеристика и особенности электрохимических методов анализа Классификация и общая характеристика методов. Строение и характеристика электрохимической ячейки (ЭХЯ) и ее химического эквивалента. Индикаторные электроды, электроды сравнения,	2	6

ионоселективные электроды. Уравнение Нерста, законы Фарадея.		
Тема 6. Потенциометрия (ионометрия), рН-метрия, потенциометрическое титрование Потенциометрия. Измерение потенциала. Индикаторные электроды — металлические и ионоселективные. Принципиальная схема потенциометра. Ионометрия и ее практическое применение. Потенциометрическое титрование, кривые потенциометрического титрования. Способы нахождения конечной точки титрования и точки эквивалентности.	2	6
Тема 7. Кондуктометрия, кондуктометрическое титрование и др. электрохимические методы анализа. Кондуктометрия. Электрическая проводимость растворов. Принципиальная схема кондуктометра. Прямая и косвенная (кондуктометрическое титрование) кондуктометрия. Высокочастотное титрование. Строение электродов для кондуктометрии. Использование стандартных растворов.	2	6
Тема 8. Общая характеристика, особенности и теоретические основы хроматографии Определение хроматографии и хроматографического анализа. Классификация методов хроматографии: по агрегатному состоянию, по механизму разделения, по форме проведения	4	6
Тема 9. Жидкостная хроматография Жидкостная хроматография. Ионообменная хроматография: иониты (катиониты и аниониты); обменная емкость, константа обмена, коэффициент селективности, коэффициент распределения, сдвиг ионообменного равновесия	4	6
Итого:	26	48

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ CAMOCTOЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Темы для самостоятельного изучения	Изучаемые вопросы	Кол- во часов	Формы самостоят ельной работы	Методическ ое обеспечени е	Форма отчетности
------------------------------------	----------------------	---------------------	--	-------------------------------------	---------------------

Тема 1. Общая классификация физико- химических методов анализа. Количественный анализ и Титриметрия гравиметрия	Введение и задачи дисциплины физико- химические методы анализа. Значение химических, физических и физико- химических методов анализа в современной науке, промышленной и технике. Определение аналитического сигнала. Образец и проба. Качественный анализ. Интенсивные и экстенсивные свойства. Классификация ошибок и методы учета погрешностей. Общая классификация методов анализа. Химические (классические) методы анализа: понятие о гравиметрическ ом и титриметрическ ом и титриметрическ ом анализе. Физико- химические (инструменталь ные) методы анализа	2	Работа с литературо й, Интернет	Учебно- методическо е обеспечение дисциплины	Тест, конспект, сообщение
Тема 2. Общие	Электромагнитн	2	Работа на	Учебно-	Тест,

положения и теоретические основы оптических методов анализа.	ое излучение и его природа. Спектр электромагнитн ого излучения. Строение вещества и происхождение спектров. Строение атома и происхождение атомных спектров. Наблюдение и регистрация спектроскопиче ских сигналов		ПК, работа с литературо й, Интернет	методическо е обеспечение дисциплины	конспект, сообщение
Тема Молекулярная спектрометрия (абсорбционная спектрометрия). Другие спектральные методы анализа.	Молекулярно- спектроскопиче ские методы анализа. Наблюдение и регистрация спектроскопиче ских сигналов. Приемники излучения. Закон светопоглощени я — закон Бугера- Ламберта- Бера. Спектры поглощения. Правило аддитивности. Теоретические основы фотоэлектрокол ориметрии (ФЭК) спектрофотомет рии	2	Работа на ПК, работа с литературо й, Интернет	Учебно- методическо е обеспечение дисциплины	Тест, конспект, сообщение
Тема 4. Общая характеристика спектроскопических (неоптических) методов анализа.	Радиоспектроск опические методы анализа Электронный парамагнитный	2	Работа с литературо й, Интернет	Учебно- методическо е обеспечение дисциплины	Тест, конспект, сообщение

	резонанс (ЭПР). Теоретические основы методов. Условие электронного парамагнитного резонанса. Дипольдипольн ое и контактное взаимодействие. Наблюдение сверхтонкой структуры (СТС). Спектр ЭПР. g- фактор — фактор спектроскопиче ского расщепления. Расчет числа линий в спектре ЭПР. Наблюдение дополнительной сверхтонкой структуры (ДСТС). Правило аддитивности.				
Тема 5. Общая характеристика и особенности электрохимических методов анализа	Классификация и общая характеристика методов. Строение и характеристика электрохимичес кой ячейки (ЭХЯ) и ее химического эквивалента. Индикаторные электроды, электроды сравнения, ионоселективны е электроды. Уравнение Нерста, законы	2	Работа на ПК, работа с литературо й, Интернет	Учебно- методическо е обеспечение дисциплины	Тест, конспект, сообщение

Фарадея			
Итого:	10		

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код и наименование компетенции	Этапы формирования компетенции	Формы учебной работы по формированию компетенций в процессе освоения образовательной программы
УК-3. Способен осуществлять социальное взаимодействие и реализовывать свою роль в	Когнитивный	1.Работа на учебных занятиях 2.Самостоятельная работа
команде	Операционный	1.Работа на учебных занятиях 2.Самостоятельная работа
	Деятельностный	1.Работа на учебных занятиях 2.Самостоятельная работа
ДПК - 4 - Способен организовывать проектную деятельность обучающихся в области технического творчества	Когнитивный	1.Работа на учебных занятиях 2.Самостоятельная работа
	Операционный	1.Работа на учебных занятиях 2.Самостоятельная работа
	Деятельностный	1.Работа на учебных занятиях 2.Самостоятельная работа
ДПК-7. Способен разрабатывать и реализовывать образовательные программы, учебные предметы, курсы,	Когнитивный	1.Работа на учебных занятиях 2.Самостоятельная работа

дисциплины (модули) инженерной направленности	Операционный	1. Работа на учебных занятиях 2. Самостоятельная работа
	Деятельностный	1. Работа на учебных занятиях 2. Самостоятельная работа

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

УК-3. Способен осуществлять социальное взаимодействие и реализовывать свою роль в команде

Этапы форми ровани	Уровн и освоен			Шкала оцениван ия
я компет енции	ия состав ляющ ей компе тенци и	Описание показателей	Критерии оценивания	Выражен ие в баллах БРС
Когнит ивный	Порог овый	Знание способов осуществления социального взаимодействия и реализации своей роли в команде	Общие знания способов осуществления социального взаимодействия и реализации своей роли в команде	41- 80

	продв инуты й		Всесторонние знания способов осуществления социального взаимодействия и реализации своей роли в команде	81 - 100
Операц ионны й	Порог овый	Порог	Низкий уровень умения осуществлять социальное взаимодействие и реализовывать свою роль в команде	41- 80
продв свою роль в	Высокийуровень умения осуществлять социальное взаимодействие и реализовывать свою роль в команде	81 - 100		
Деятел ьностн ый	Порог овый	Владение способами осуществления социального	Владение первоначальным опытом осуществления социального взаимодействия и реализации своей роли в команде	41- 80

взаимодействия и реализации своей роли в команде продв инуты й	Накопление широкого опыта владения способами осуществления социального взаимодействия и реализации своей роли в команде	81 - 100
--	---	----------

ДПК-7. Способен разрабатывать и реализовывать образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.

Этапы форми	Уровн и			Шкала оценивания
ровани я компет енции	освое ния состав ляющ ей компе тенци и	Описание показателей	Критерии оценивания	Выражение в баллах БРС
Когнит ивный	порог овый	Знание основ разработки и реализации образовательных программ,	Знание основ разработки и реализации образовательных программ, учебных предметов, курсов, дисциплин (модулей) инженерной направленности.	41-60
	продв инуты й	гы дисциплин	Понимает и объясняет сущность разработки и реализации образовательных программ, учебных предметов, курсов, дисциплин (модулей) инженерной направленности.	81 - 100
Операц ионны й	порог овый	Умение разрабатывать и реализовывать	Удовлетворительный уровень освоения умения разработки и реализации образовательных программ, учебных	41-60

		образовательные программы,	предметов, курсов, дисциплин (модулей) инженерной направленности	
	продв инуты й	учебные предметы, курсы, дисциплины (модули) инженерной направленности.	Высокий уровень сформированности умения разработки и реализации образовательных программ, учебных предметов, курсов, дисциплин (модулей) инженерной направленности	81 - 100
Деятел ьностн ый	порог овый	Владение способностью разрабатывать и реализовывать	Фрагментарное владение способностью разрабатывать и реализовывать образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.	41-60
	продв инуты й	образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.	Владение способностью разрабатывать и реализовывать образовательные программы, учебные предметы, курсы, дисциплины (модули) инженерной направленности.	81 - 100

ДПК-4. Способен организовывать проектную деятельность обучающихся в области технического творчества

Этапы форми ровани	Уровн и освое			Шкала оценивани я
я компет енции	ния состав ляющ ей компе тенци и	Описание показателей	Критерии оценивания	Выражение в баллах БРС
Когнит ивный	порог овый	Знание основ организации проектной деятельности	Знание основ организации проектной деятельности обучающихся в области технического творчества	41-60
	продв инуты й	обучающихся в области технического творчества	Понимает и объясняет сущность осуществления организации проектной деятельности обучающихся в области технического творчества	81 - 100
Опера ционн	порог овый	Умение организовывать	Удовлетворительный уровень освоения умения организовывать проектную	41-60

ый		проектную деятельность	деятельность обучающихся в области технического творчества.	
	продв инуты й	обучающихся в области технического творчества	Высокий уровень сформированности умения организовывать проектную деятельность обучающихся в области технического творчества	81 - 100
Деятел ьностн ый	порог овый	Владение способностью организовывать проектную	Фрагментарное владение способностью осуществлять поиск, критический организовывать проектную деятельность обучающихся в области технического творчества	41-60
	продв инуты й	деятельность обучающихся в области технического творчества	Владение способностью организовывать проектную деятельность обучающихся в области технического творчества	81 - 100

Описание шкал оценивания

Шкала оценивания конспектов

Конспекты оцениваются по шкале от 0 до 1 балла.

Максимальное количество баллов – 10

Показатель	Балл
Выполнено	1 балл
Не выполнено	0 баллов

Шкала оценивания теста

Написание теста оценивается по шкале от 0 до 30 баллов. Освоение компетенций зависит от результата написания теста:

1 3	
компетенции считаются освоенными на высоком	15-30 баллов (80-100% правильных ответов)
уровне (оценка отлично)	
компетенции считаются освоенными на базовом	9-14 баллов (70-75 % правильных ответов)
уровне (оценка хорошо);	
компетенции считаются освоенными на	1-8 баллов (50-65 % правильных ответов)
удовлетворительном уровне (оценка	
удовлетворительно);	
компетенции считаются не освоенными (оценка	0 баллов (менее 50 % правильных ответов)
неудовлетворительно).	

Шкала оценивания сообщение

если представленное сообщение свидетельствует о проведенном самостоятельном исследовании с привлечением различных источников информации; логично, связно и полно раскрывается тема; заключение содержит логично вытекающие из содержания выводы.	25-30 баллов
если представленное сообщение свидетельствует о проведенном самостоятельном исследовании с привлечением двух-трех источников информации; логично, связно и полно раскрывается тема; заключение содержит логично вытекающие из содержания выводы.	13-24 балла
если представленное сообщение свидетельствует о проведенном исследовании с привлечением одного источника информации; тема раскрыта не полностью; отсутствуют выводы.	1-12 баллов
если сообщение отсутствует	0 баллов

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерные тестовые задания

- 1. Какой из методов относится к химическим методам анализа
 - а) Титриметрический метод
 - б) Спектрофотометрия
 - в) Хроматография
 - г) Масс-спектрометрия
- 2. Что измеряется в титриметрическом анализе
 - а) Поглощение света
 - б) Объем добавленного реагента
 - в) Масса образца
 - г) Электропроводность
- 3. Какой показатель чаще всего используют в колориметрическом анализе
 - а) Электропроводность
 - б) Оптическую плотность
 - в) Массовый состав
 - г) Температуру
- 4. Какие реакции используются в классическом химическом анализе
 - а) Элементарного восстановления

- б) Осаждения и кислотно-основные реакции
- в) Ионного обмена
- г) Фотоэлектрического эффекта
- 5. Что такое поглощательная спектроскопия
 - а) Измерение поглощения света различной длины волны веществом
 - б) Отражение света от поверхности образца
 - в) Испускание излучения
 - г) Электрохимический потенциал
- 6. Какой прибор используется для измерения потенциала в потенциометрии
 - а) Вольтметр
 - б) Спектрофотометр
 - в) Рефрактометр
 - г) Титратор
- 7. Что называют эквивалентной точкой в титровании
 - а) Начало реакции
 - б) Момент, когда количество титранта равняется количеству анализируемого вещества
 - в) Точка максимального поглощения
 - г) Момент полного испарения раствора
- 8. Какой из перечисленных методов относится к физико-химическим
 - а) Гравиметрический анализ
 - б) Кондуктометрия
 - в) Осаждение
 - г) Титрование
- 9. Что измеряет кондуктометрический метод
 - а) Показатель преломления
 - б) Электрическую проводимость раствора
 - в) Оптическую плотность
 - г) РН раствора
- 10. Что такое калориметрический анализ
 - а) Измерение тепловых эффектов реакции
 - б) Измерение температуры раствора
 - в) Измерение массы
 - г) Измерение кислотности
- 11. Для чего используют хроматографию в анализе веществ
 - а) Для определения молекулярной массы
 - б) Для разделения смеси на компоненты
 - в) Для измерения электропроводности
 - г) Для анализа объема

- 12. Какой параметр чаще всего измеряют в спектрофотометрии
 - а) Массу вещества
 - б) Поглощение света при определенной длине волны
 - в) Время реакции
 - г) Электрический ток
- 13. Что такое стандартный раствор в титриметрическом анализе
 - а) Раствор не известной концентрации
 - б) Раствор с точно известной концентрацией вещества
 - в) Вода
 - г) Раствор с изменяемой концентрацией
- 14. Какой метод используется для определения ионов в растворах
 - а) Ионометрия
 - б) Калориметрия
 - в) Гравиметрия
 - г) Дистилляция
- 15. Что происходит при осаждении при химическом анализе
 - а) Вещества превращаются в газ
 - б) Образуются нерастворимые соединения, которые выпадают в осадок
 - в) Увеличивается тепловая энергия
 - г) Повышается кислотность раствора

Примерная тематика сообщений

- 1. Введение в химические и физико-химические методы анализа
- 2. Классификация методов аналитической химии
- 3. Основы титриметрического метода анализа
- 4. Спектральные методы анализа: принципы и применение
- 5. Электрохимические методы: потенциометрия и кондуктометрия
- 6. Хроматографические методы в аналитической химии
- 7. Применение калориметрии в химическом анализе
- 8. Физико-химические параметры и их использование в анализе
- 9. Пределы обнаружения и чувствительность методов анализа
- 10. Разделение и концентрирование веществ в аналитической химии
- 11. Кинетические методы анализа: теория и практика
- 12. Принципы работы масс-спектрометрии
- 13. Оптические методы: фотометрия, нефелометрия, турбидиметрия
- 14. Электрохимические методы как современные инструментальные методы
- 15. Стандартизация и валидация аналитических методов
- 16. Примеры практического применения физических методов анализа
- 17. Сравнение классических и инструментальных методов
- 18. Техническое оснащение лабораторий для физических методов анализа

- 19. Новые тенденции и технологии в физико-химическом анализе
- 20. Ошибки и источники неточностей в химических и физико-химических методах анализа

Примерные вопросы к экзамену:

- 1. Какие методы относятся к физико-химическим методам анализа?
- 2. На каком принципе основан рефрактометрический метод анализа?
- 3. Что измеряется в титриметрическом анализе?
- 4. Какова основная цель хроматографии?
- 5. Какие параметры измеряются в спектрофотометрии?
- 6. Назовите основные этапы проведения титрования.
- 7. Что такое эквивалентная точка в титровании?
- 8. В чем суть калориметрического анализа?
- 9. Какие виды спектрального анализа вы знаете?
- 10. Как определяется рН раствора и почему это важно?
- 11. Чем отличается комплексонометрический метод от других титриметрических методов?
- 12. Назовите основные виды электродов, используемых в потенциометрии.
- 13. Каковы преимущества физических методов анализа по сравнению с классическими химическими?
- 14. Что измеряется в кондуктометрии?
- 15. Как осуществляется разделение веществ в газовой хроматографии?
- 16. Какие ошибки наиболее часто встречаются в химическом анализе?
- 17. В чем заключается метод атомно-абсорбционной спектроскопии?
- 18. Как определить концентрацию вещества по результатам фотоколориметрического анализа?
- 19. Какие методы анализа используют электродные потенциалы?
- 20. Что такое градуировочный график и как он применяется?
- 21. В чем специфика нефелометрии и турбидиметрии?
- 22. Назовите основные компоненты аппарата для спектрофотометрического анализа.
- 23. Чем отличается метод иодометрии от оксидиметрии?
- 24. Какие физико-химические методы применяются для анализа мутных растворов?
- 25. Для чего используется атомно-эмиссионная спектроскопия?
- 26. Что такое чувствительность метода анализа?
- 27. Какие принципы лежат в основе молекулярно-абсорбционной ИК-спектроскопии?
- 28. В чем заключается технология модульного обучения в химическом анализе?
- 29. Для чего необходима стандартизация аналитических методов?
- 30. Каковы основные требования к подготовке проб в химическом анализе?

Примерные темы курсовых работ

- 1. Анализ веществ методом атомно-абсорбционной спектроскопии
- 2. Исследование спектрофотометрического анализа и его применение
- 3. Применение хроматографических методов в контроле качества фармацевтических препаратов
- 4. Электрохимические методы анализа: потенциометрия и кондуктометрия
- 5. Использование калориметрических методов для определения тепловых эффектов реакций

- 6. Современные методы разделения и очистки веществ в химическом анализе
- 7. Титриметрический метод анализа: теория, практика, примеры
- 8. Разработка методики количественного анализа сложных смесей
- 9. Использование масс-спектрометрии для идентификации органических соединений
- 10. Применение нефелометрии и турбидиметрии в определении взвешенных веществ
- 11. Анализ состава природных вод методами физико-химического анализа
- 12. Методы определения кислотности (рН) и их практическое значение
- 13. Влияние факторов на точность и воспроизводимость химического анализа
- 14. Методики калибровки и валидации аналитических приборов
- 15. Обзор и применение модульных технологий в химическом анализе
- 16. Сравнительный анализ классических и современных физико-химических методов
- 17. Принципы работы и применение инфракрасной спектроскопии
- 18. Особенности подготовки проб для физико-химического анализа
- 19. Методика анализа металлов в промышленных образцах
- 20. Применение исследовательских технологий в самостоятельных химических исследованиях

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Требования к тестированию

Предлагаемые тестовые задания предназначены для повторения пройденного материала и закрепления знаний, главная цель тестов - систематизировать знания студентов. Во всех тестовых заданиях необходимо выбрать правильный из предлагаемых ответов, завершить определение либо вставить недостающий термин. Текущий контроль знаний в виде тестирования, проводится в рамках практического занятия.

Написание теста оценивается по шкале от 1 до 30 баллов. Освоение компетенций зависит от результата написания теста.

Сообщение

Сообщение – продукт самостоятельной работы студента, представляющий собой публичное выступление по представлению полученных результатов решения определенной учебнопрактической, учебно-исследовательской или научной темы.

Требования по оформлению сообщения

Последовательность подготовки сообщения:

- 1. Подберите и изучите литературу по теме.
- 2. Составьте план сообщения.
- 3. Выделите основные понятия.
- 4. Введите в текст дополнительные данные, характеризующие объект изучения.
- 5. Оформите текст письменно.
- 6. Подготовьте устное выступление с сообщением на учебном занятии Само выступление должно состоять из трех частей — вступления (10-15%

общего времени), основной части (60-70%) и заключения (20-25%).

Требования к оформлению текста

Общий объем не должен превышать 5 страниц формата А 4, абзац должен равняться 1,25 см.

Поля страницы: левое - 3 см., правое - 1,0 см., нижнее 2 см., верхнее - 2 см. Текст печатается через 1,5 интервала. Если текст набирается в текстовом редакторе Microsoft Word, рекомендуется использовать шрифты: Times New Roman, размер шрифта - 14 пт.

После заголовка, располагаемого посредине строки, не ставится точка. Не допускается подчеркивание заголовка и переносы в словах заголовка. Страницы нумеруются в нарастающем порядке. Номера страниц ставятся внизу листа по центру, размер шрифта - 12 пт

Титульный лист включается в общую нумерацию, но номер страницы на нем не проставляется (это не относится к содержанию сообщения).

Требования к курсовой работе.

- 1. Шрифт для курсовой работы по госту должен быть Times New Roman размер шрифта (кегль) -14 пт
- 2. Согласно правилам оформления курсовой работы по ГОСТ выбирают межстрочный интервал, равный 1,5.
- 3. Каждый новый абзац начинают с красной строки, выбирая отступ, равный 1,25 см.
- 4. Весь основной текст выравнивается по ширине.
- 5. Важно выставить правильные поля документа: у левого по ГОСТ ширина должна быть не менее 3 см, у правого 1 см, у верхнего и у нижнего— по 2 см.

Курсовая работа представляется на кафедру не позднее 2-х недель до конца семестра. Основанием для допуска работы к защите является положительное решение научного руководителя.

Курсовая работа не допускается к защите в следующих случаях:

- тема курсовой работы не соответствует теме, утвержденной кафедрой;
- содержание работы не соответствует заявленной теме;
- структура работы не содержит всех необходимых элементов;
- в работе отсутствует корреляция между целью, задачами исследования, основной частью и выводами в заключении;
- оформление работы не соответствует требованиям, предъявляемым к курсовой работе
- в работе студентом использованы чужие материалы без ссылки на их источник (плагиат).

Защита курсовой работы по решению кафедры может проводиться в различных формах: в форме диалога «преподаватель - студент», в форме публичной защиты в студенческой группе и т.п., в том числе с представлением презентации в электронном формате.

На защите студент должен в краткой форме изложить основное содержание курсовой работы и сделанные выводы, а также ответить на вопросы, заданные научным руководителем и присутствующими.

При выставлении оценки учитываются следующие основные критерии:

- самостоятельность проведения исследования;
- соответствие курсовой работы требованиям, предъявляемым к ее содержанию и оформлению;
- актуальность рассматриваемой темы;
- глубина разработки темы исследования, количество и качество использованных источников информации;
- уровень освоения теоретического и практического материала;
- четкость сделанных выводов;
- способность студента аргументировано излагать свою позицию, защищать основные положения работы и сделанные выводы, отвечать на поставленные вопросы.

Шкала оценивания курсовой работы

Баллы	Критерии оценивания
81-100 баллов	Выставляется при полном соблюдении всех требований, предъявляемых к курсовой работе, уверенной защите результатов проведенного исследования, убедительном аргументировании своих суждений.
61-80 баллов	Выставляется, если при наличии выполненной на высоком уровне реферативной части исследовательская часть и выводы недостаточно убедительны, хотя автор достаточно четко излагает материал и результаты своей работы.
41-60 баллов	Выставляется при частичном соблюдении требований, предъявляемых к курсовой работе. При этом автор неполно раскрывает суть проблемы, исследовательская часть выполнена недостаточно тщательно
0-40 баллов	Выставляется, если не соблюдены все основные требования, предъявляемые к работе, автор не может защитить и аргументировано ответить на вопросы.

Требования к экзамену

Промежуточная аттестация по дисциплине определяет степень усвоения знаний, умений и навыков студентов по учебному материалу семестра, проводится в виде экзамена.

К экзамену допускаются студенты, успешно выполнившие все задания на практических занятиях и по самостоятельной работе.

Экзамену по дисциплине проводится включает в себя отчет по выполнению всех практических/лабораторных заданий по темам и заданий по самостоятельной работе. На экзамене по дисциплине студент должен ответить на теоретические вопросы.

Выбор формы и порядок проведения экзамена осуществляется кафедрой. Оценка знаний студента в процессе зачета осуществляется исходя из следующих критериев:

- а) умение сформулировать определения понятий, данных в вопросе, с использованием специальной терминологии, показать связи между понятиями;
- б) способность дать развернутый ответ на поставленный вопрос с соблюдением логики изложения материала; проанализировать и сопоставить различные точки зрения на поставленную проблему;
 - в) умение аргументировать собственную точку зрения.

<u>При оценке студента на экзамене преподаватель руководствуется следующими</u> критериями:

Шкала оценивания экзамена

- 30-25 баллов плановые практические задания выполнены в полном объеме; приведен полный, исчерпывающе правильный ответ и даны исчерпывающие верные рассуждения; устный ответ на вопросы констатирует прочное усвоение знаний и умений.
- 24-18 баллов плановые практические задания выполнены в полном объеме; поставленные задачи решены правильно, однако рассуждения, приводящие к ответу,

представлены не в полном объеме, или в них содержатся логические недочеты; устный ответ на вопросы содержит неточности, незначительные погрешности в изложении теории.

- 17-9 баллов плановые практические задания выполнены, даны правильные ответы, но в некоторых из них допущены ошибки; устный ответ на вопросы показывает отдельные пробелы в знаниях студента.
- 8-5 балла плановые практические задания выполнены не в полном объеме; устный ответ на вопросы содержит грубые ошибки в изложении теории, которые показывают значительные пробелы в знаниях студента; более половины вопросов оказались без ответов; знания и умения не соответствуют требованиям программы.
- 4-0 баллов не выполнены плановые практические задания, студент объявляет о непонимании материала дисциплины, о полном незнании ответа на поставленные теоретические вопросы

Распределение баллов по видам работ

Вид работы	Кол-во баллов (максимальное значение)
Конспект	до 10 баллов
Сообщение	до 30 баллов
Тест	до 30 баллов
Экзамен	до 30 баллов

Итоговая шкала оценивания по дисциплине

При выставлении итоговой оценки преподавателем учитывается работа студента в течение всего срока освоения дисциплины, а также баллы, полученные на промежуточной аттестации.

Цифровое выражение	Выражение в баллах БРС	Словесное выражение	Описание оценки в требованиях к уровню и объему компетенций
5	81-100	Отлично (зачтено)	Освоен продвинутый уровень всех составляющих компетенций: УК-3, ДПК-4, ДПК-7
4	61-80	Хорошо (зачтено)	Освоен повышенный уровень всех составляющих компетенций: УК-3, ДПК-4, ДПК-7
3	41-60	Удовлетворительно (зачтено)	Освоен базовый уровень всех составляющих компетенций: УК-3, ДПК-4, ДПК-7
2	0-40	Неудовлетворительно (не зачтено)	Не освоен базовый уровень всех составляющих компетенций: УК-3, ДПК-4, ДПК-7

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная литература

1. Майтаков, А. Л. Лабораторный практикум по технологии конструкционных материалов : учебное пособие / А. Л. Майтаков, Н. Т. Ветрова, Л. Н. Берязева. — Москва, Вологда : Инфра-Инженерия, 2023. — 192 с. — ISBN 978-5-9729-1435-7. — Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/133401.html 2. Солнцев Ю.П. Технология конструкционных материалов : учебник для вузов / Солнцев Ю.П., Ермаков Б.С., Пирайнен В.Ю.. — Санкт-Петербург : ХИМИЗДАТ, 2024. — 504 с. — ISBN 978-5-93808-417-9. — Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/132914.html

3. Технология конструкционных материалов. Производство заготовок : учебник / А. Г. Алексеев, Ю. М. Барон, М. Т. Коротких [и др.] ; под редакцией М. М. Радкевича. — Москва, Вологда : Инфра-Инженерия, 2023. — 516 с. — ISBN 978-5-9729-1210-0. — Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/132887.html

6.2. Дополнительная литература

- 1. Технология конструкционных материалов : практикум / О. Г. Драгина, П. С. Белов, О. А. Бровченко, Д. Ю. Никифоров. Москва : Ай Пи Ар Медиа, 2023. 159 с. ISBN 978-5-4497-1809-9. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/124754.html
- 2. Машков Ю.К. Трибофизика конструкционных материалов : учебное пособие / Машков Ю.К., Малий О.В.. Москва : Ай Пи Ар Медиа, 2023. 177 с. ISBN 978-5-4497-1987-4, 978-5-8149-2439-1. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/129017.html
- 3. Селиванов, В. Ф. Новые конструкционные материалы в машиностроении : учебное пособие / В. Ф. Селиванов, В. В. Ожерельев, В. А. Юрьева. Воронеж : Воронежский государственный технический университет, ЭБС АСВ, 2023. 103 с. ISBN 978-5-7731-1090-3. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/131021.html
- 4. Музылева, И. В. Электротехническое и конструкционное материаловедение. Полупроводниковые материалы и их применение : учебное пособие для СПО / И. В. Музылева. 3-е изд. Липецк, Саратов : Липецкий государственный технический университет, Профобразование, 2024. 79 с. ISBN 978-5-00175-279-0, 978-5-4488-2059-5. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/139734.html

6.3. Ресурсы информационно-телекоммуникационной сети «Интернет»

- 1. http://www.fasi.gov.ru Федеральное агентство по науке и образованию;
- 2. http://www.edu.ru Федеральный портал «Российское образование»;
- 3. http://www.garant.ru информационно-правовой портал «Гарант»
- 4. http://www.school.edu.ru Российский общеобразовательный портал;
- 5. http://www.openet.edu.ru Российский портал открытого образования;
- 6. http://www.ict.edu.ru портал по информационно-коммуникационным технологиям в образовании;
- 7. http://pedagogic.ru педагогическая библиотека;
- 8. http://www.pedpro.ru журнал «Педагогика»;
- 9. http://www.informika.ru/about/informatization_pub/about/276 научно-методический журнал «Информатизация образования и науки»;
- 10. http://www.hetoday.org журнал «Высшее образование сегодня».
- 11. http://www.znanie.org/ Общество «Знание» России
- 12. http://www.gpntb.ru Государственная публичная научно-техническая библиотека.
- 13. http://www.rsl.ru Российская национальная библиотека.
- 14. http://www.gpntb.ru Публичная электронная библиотека.
- 15. http://www.znanium.com/ Электронно-библиотечная система
- 16. http://www.biblioclub.ru/ Университетская библиотека онлайн
- 17. http://www.elibrary.ru Научная электронная библиотека

- 18. Компания «FORSIGN» [Электронный ресурс]: М.: Copyright © 2005-2016 by WWW.FORSIGN.RU Режим доступа: http://www.forsign.ru/
- 19. Компания «Компания GCC-Laser» [Электронный ресурс]: М.: © 2014 www.gcc-laser.ru Режим доступа: http://www.gcc-laser.ru
- 20. Компания «Лазеркат» [Электронный ресурс]: М.: 2009-2016, Lasercut Режим доступа: http://lasercut.ru
- 21. Компания «Лестат» [Электронный ресурс]: М.: 2015 «Лестар» Режим доступа: http://lestar-cnc.ru

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

1.Методические рекомендации по организации и выполнению самостоятельной работы студентов

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Зарубежное: Microsoft Windows, Microsoft Office Отечественное: Kaspersky Endpoint Security

Свободно распространяемое программное обеспечение:

Зарубежное: Google Chrome, 7-zip

Отечественное: ОМС Плеер (для воспроизведения Электронных Учебных Модулей)

Информационные справочные системы:

Система ГАРАНТ

Система «КонсультантПлюс»

Профессиональные базы данных:

<u>fgosvo.ru – Портал Федеральных государственных образовательных стандартов высшего</u> образования

pravo.gov.ru - Официальный интернет-портал правовой информации

www.edu.ru – Федеральный портал Российское образование

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения занятий лекционного и лабораторного типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные учебной мебелью, доской, лабораторным оборудованием;
- помещения для самостоятельной работы, укомплектованные учебной мебелью, персональными компьютерами с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду ГУП;
- помещения для хранения и профилактического обслуживания учебного оборудования, укомплектованные мебелью (шкафы/стеллажи), наборами демонстрационного оборудования и учебно-наглядными пособиями.