Документ подписан простой электронной подписью Информация о владельце:

ФИО: Наумова Натуми ПРИ СТВО О БРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ Должность: Ректор Дата подписа учарственное учреждение высшего образования Московской области Уникальный МОСКОВСКИЙ ГОСУД АРСТВЕННЫЕ ОБЛАСТНОЙ УНИВЕРСТИТЕ 6b5279da4e034bff679172803da5b7b559fc69e2 (МГОУ)

Физико-математический факультет Кафедра общей физики

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

Физика

Направление подготовки: 44.03.05 Педагогическое образование

Профиль: Технологическое и экономическое образование

Мытищи 2018

СОДЕРЖАНИЕ

1.	Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы
2.	Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания
3.	Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы
4.	Методические материалы, определяющие процедуры оценивания знаний, умений навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

В результате освоения дисциплины студент должен обладать следующими компетенциями:

Код и наименование компетенции	Этапы формирования
ОПК-5 «Способен осуществлять кон-	1. Работа на учебных занятиях
троль и оценку формирования резуль-	2. Самостоятельная работа
татов образования обучающихся, вы-	
являть и корректировать трудности в	
обучении».	

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оценива-	Уровень сфор-	Этап формиро-	Описание пока-	Критерии	Шкала
емые	мированности	вания	зателей	оценивания	оценивания
компе-					
тенции					
ОПК-5	Пороговый.	1. Работа на	Знать:	Текущий	41-60
		учебных заня-	основы контроля	контроль:	
		ТИЯХ	и оценки фор-	расчетно-	
		2. Самостоя-	мирования ре-	графическая	
		тельная работа	зультатов обра-	работа, лабо-	
			зования обуча-	раторная ра-	
			ющихся.	бота, посе-	
			Уметь:	щение, те-	
			осуществлять	сты, Проме-	
			контроль и	жуточная ат-	
			оценку форми-	теста-	
			рования резуль-	ция:экзамен.	
			татов образова-		
			ния обучающих-		
			ся, выявлять и		
			корректировать		
			трудности в		
			обучении.		
	Продвинутый.	1. Работа на	Знать:	Текущий	61-100
		учебных заня-	основы контроля	контроль:	
		тиях (лекции,	и оценки фор-	расчетно-	
		лабораторные	мирования ре-	графическая	
		работы)	зультатов обра-	работа, лабо-	
		2. Самостоя-	зования обуча-	раторная ра-	
		тельная работа	ющихся.	бота, посе-	
			Уметь:	щение, те-	
			осуществлять	сты, Проме-	
			контроль и	жуточная ат-	
			оценку форми-	теста-	
			рования резуль-	ция:экзамен.	

татов образова-
ния обучающих-
ся, выявлять и
корректировать
трудности в
обучении.
Владеть:
методами оцен-
ки продолжи-
тельности и сто-
имости проекта,
а также потреб-
ности ресурсах.
навыками реали-
зации контроля
и оценки фор-
мирования ре-
зультатов обра-
зования обуча-
ющихся, выяв-
ления и коррек-
тирования труд-
ности в обуче-
нии.

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Тематика лабораторных работ

- 1. Изучение последовательного соединения элементов в цепи переменного тока.
- 2. Изучение трехфазной цепи переменного тока.
- 3. Изучение однофазного трансформатора.
- 4. Изучение полупроводникового диода и стабилитрона.
- 5. Изучение полевого транзистора.
- 6. Изучение биполярного транзистора.
- 7. Изучение резисторного усилителя напряжения.
- 8. Исследование основных логических элементов и простейших комбинационных устройств.
- 9. Исследование триггеров RS, D и T типов.
- 10. Исследование параллельного и последовательного регистров.
- 11. Исследование основных комбинационных устройств: дешифратора, демультиплексора, мультиплексора и преобразователя кодов на ПЗУ.
- 12. Исследование счетчиков электрических импульсов.
- 13. Исследование четырехразрядного параллельного сумматора.

Темы расчетно-графических работ

- 1. Динамика материальной точки
- 2. Динамика твердого тела
- 3. Геометрическая оптика

- 4. Фотоэффект
- 5. Интерференция волн
- 6. Дифракция волн
- 7. Двойное лучепреломление
- 8. Магнитное поле
- 9. Электрическое поле

Тематика тестов

Часть І

Вариант 1.

1. Радиус-вектор материальной точки в де-	1.	$\mathbf{i} \cdot \mathbf{x} + \mathbf{j} \cdot \mathbf{y} + \mathbf{k} \cdot \mathbf{z}$
картовой системе отсчета определяется выражением:	2.	$\sqrt{x^2 + y^2 + z^2}$
	3.	$\lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t} = \frac{\mathbf{dr}}{\mathbf{dt}}$
	4.	$\sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}z}{\mathrm{d}t}\right)^2}$
2. Основное уравнение динамики враща-	1.	$\mathbf{L} = [\mathbf{R} \times \mathbf{m} \mathbf{v}]$
тельного движения определяется форму-	2.	$\mathbf{L} = I \mathbf{\omega}$
лой:	3.	$\mathbf{M} = \mathrm{I}\mathbf{\epsilon}$
	4.	$\mathbf{M} = [\mathbf{R} \times \mathbf{F}]$
3. Потенциал поля тяготения, создаваемого	1.	$g = -grad\phi$
телом массы M, определяется соотношением:	2.	$\Pi = -\frac{GmM}{R}$
	3.	$\varphi = -\frac{GM}{R}$
	4.	$\Pi = mgh$
4. Потенциальная энергия тела на поверхности Земли определяется по формуле:	1.	$E = \frac{kx^2}{2}$
	2.	$E = \frac{mv^2}{2}$
	3.	E = mgh
	4.	$E = -\frac{GmM}{R_3}$
5. Модуль силы внутреннего трения в жидкости определяется формулой:	1.	$F = \eta \left \frac{\Delta v}{\Delta x} \right S$
	2.	F = 6πηrv
	3.	F = mg
	4.	$F = \frac{4}{3}\pi r^3 \rho g$

Примечание: Для ответа поставьте галочку в средней колонке около цифры 1, 2, 3 или 4.

Вариант 1 (Продолжение)

6. Кинематическое уравнение свободных гар-	1.	$A_0\cos(\omega t + \varphi)$
монических колебаний материальной точки	2.	$A_o\omega\cos(\omega t + \varphi)$
имеет вид:	3.	$A_0\omega^2\cos(\omega t + \varphi)$
	4.	$A_0e^{-\delta t}\cos(\omega t + \varphi)$
7. Период колебаний физического маятника определяется формулой:	1.	$T = 2\pi \sqrt{\frac{l}{g}}$
	2.	$T=2\pi\sqrt{\frac{m}{k}}$
	3.	$T = 2\pi \sqrt{\frac{J}{mgl}}$
	4.	Каждой из этих формул.
8. Наиболее вероятная скорость молекул идеального газа имеет вид:	1.	$\sqrt{\frac{2kT}{m}}$
	2.	$\sqrt{\frac{8kT}{\pi m}}$
	3.	$\sqrt{\frac{3kT}{m}}$
	4.	Каждого из этих выражений.
9. Работа газа при изохорном термодинамическом процессе определяется формулой:	1.	$A = \frac{m}{\mu} RT \cdot ln \frac{V_2}{V_1}$
	2.	$A = p(V_2 - V_1)$ $A = 0$
	3.	A = 0
	4.	$A = \frac{m}{\mu} \frac{i}{2} R(T_2 - T_1)$
10. Изменение энтропии идеального газа при переходе из состояния 1 в состояние 2 при изобарном процессе определяется форму-	1.	$\Delta S_{_{1\rightarrow2}} = \frac{m}{\mu} R ln \frac{V_{_2}}{V_{_1}}$
лой:	2.	$\Delta S_{_{l\rightarrow 2}} = \frac{m}{\mu} C_p ln \frac{T_2}{T_1}$
	3.	$\Delta S_{_{1\rightarrow2}} = \frac{m}{\mu} C_V ln \frac{T_{_2}}{T_{_1}}$
	4.	$\Delta S_{1\rightarrow 2} = 0$

Примечание: Для ответа поставьте галочку в средней колонке около цифры 1, 2, 3 или 4.

Вариант 2.

1. Уравнения равноускоренного прямолиней-	1.	$v = V_0; s = s_0 + V_0 t$
---	----	-----------------------------

HOLO ABIAKOMIA IMOIOT BIATA		0.0104
ного движения имеют вид:		$\omega = \omega_0 + \varepsilon \cdot t ;$
	2.	$\mathbf{\epsilon} \cdot \mathbf{t}^2$
		$\varphi = \varphi_0 + \omega_0 \cdot t + \frac{\varepsilon \cdot t^2}{2}$
		$\frac{1}{2}$
	3.	$v = v_0 + at$; $s = s_0 + v_0 t + \frac{at^2}{2}$
		$v = v_0 + At + \frac{Bt^2}{2};$
	4.	
		$s = s_0 + v_0 t + \frac{At^2}{2} + \frac{Bt^3}{6}$
2. Основное уравнение динамики поступа-	1.	$\mathbf{F} = \mathbf{m} \cdot \boldsymbol{a}$
тельного движения определяется форму-	_	$\mathbf{F} = \mathbf{m} \frac{\mathbf{d} \mathbf{v}}{\mathbf{d} \mathbf{r}}$
лой:	2.	$\mathbf{F} = \mathbf{m} \frac{\mathbf{T}}{\mathbf{dt}}$
	3.	$\mathbf{F} = \frac{\mathrm{d}}{\mathrm{d}t} (\mathbf{m} \cdot \mathbf{v})$
	4.	Каждой из этих формул.
3. Первая космическая скорость определяется	1.	v = c/n
соотношением:	2.	$\mathbf{v} = \omega \mathbf{r}$
	3.	$\mathbf{v} = \sqrt{gR_3}$
	4.	$\mathbf{v} = \sqrt{2g\mathbf{R}_3}$
4. Мощность определяется формулой:		dA
	1.	$N = \frac{dA}{dt}$
	2.	$N = M \cdot \omega$
	3.	$N = F \cdot v$
	4.	Каждой из этих формул.
5. Динамическим давлением жидкости назы-		ρv^2
вают величину:	1.	<u>F'</u>
		2
	2.	ρgh
	3.	F/S
	4.	ρv^2
	4.	$p + \frac{p}{2}$

Примечание: Для ответа поставьте галочку в средней колонке около цифры 1, 2, 3 или 4. Вариант 2. (Продолжение)

6. Скорость материальной точки, соверша-	1.	$A_{o}cos(\omega t + \varphi)$
ющей свободные гармонические колеба-	2.	$A_o \omega \cos(\omega t + \varphi)$
ния, записывается в виде:	3.	$A_o\omega^2\cos(\omega t + \varphi)$
	4.	$A_0e^{-\delta t}\cos(\omega t + \varphi)$
7. Дифференциальное уравнение вынужденных гармонических колебаний имеет вид:	1.	$\frac{\mathrm{dx}}{\mathrm{dt}} = -\lambda \cdot \mathbf{x} \cdot \mathrm{dt}$

	2.	$\frac{d^2x}{dt^2} + 2\delta \frac{dx}{dt} + \omega^2 x = \frac{F}{m}\cos \omega t$
	3.	$\frac{d^2x}{dt^2} + 2\delta \frac{dx}{dt} + \omega^2 x = 0$
	4.	$\frac{d^2x}{dt^2} + \omega^2 x = 0$
8. Изотермический процесс для идеального	1.	pV = const
газа описывается выражением:	2.	$V = V_0(1 + \alpha t)$
	3.	$p = p_0(1 + \alpha t)$
	4.	$pV^{\gamma} = const$
9. Удельная теплоемкость идеального газа		dQ
определяется выражением:	1.	$\frac{d}{dT}$
		dQ
	2.	$\frac{d}{\mathbf{m} \cdot d\mathbf{T}}$
	3.	$\frac{i}{2}R$
	4.	$\frac{i+2}{2}R$
10. Изменение энтропии идеального газа при переходе из состояния 1 в состояние 2 при адиабатном процессе определяется	1.	$\Delta S_{_{1\rightarrow2}} = \frac{m}{\mu} \operatorname{Rln} \frac{V_{_2}}{V_{_1}}$
формулой:	2.	$\Delta S_{_{1\rightarrow2}} = \frac{m}{\mu} C_p ln \frac{T_{_2}}{T_{_1}}$
	3.	$\Delta S_{1\to 2} = \frac{m}{\mu} C_V ln \frac{T_2}{T_1}$ $\Delta S_{1\to 2} = 0$
	4.	$\Delta S_{1\to 2} = 0$

Примечание: Для ответа поставьте галочку в средней колонке около цифры 1, 2, 3 или 4.

Часть II

Вариант 1.

1. Два одинаковых металлических шарика имеют заряды $q_1 = Q$ и $q_2 = -3Q$. Шарики привели в соприкосновение и развели на прежнее расстояние, в результате чего сила взаимодействия между ними	1. 2. 3.	Уменьшилась в три раза Уменьшилась в два раза
	4.	Осталась прежней Увеличилась в два раза
2. Напряженность электрического поля бесконечной плоскости, равномерно заряженной с поверхностной плотностью	1.	$\frac{\sigma}{arepsilon_0}$
σ, равна:	2.	$rac{\sigma}{2arepsilon_0}$
	3.	σ

	4.	σ
	7.	2
3. Потенциал электрического поля, создавае-	1.	<u>1 q</u>
мого зарядом q в точке, удаленной от заряда на расстояние r , определяется выра-	1.	$4\pi\epsilon_{_0}$ r
жением:		$1 \mathbf{q} \cdot \mathbf{q}_0$
	2.	$\frac{1}{4\pi\epsilon_0}\frac{1}{r^2}$
		1 a
	3.	$\frac{1}{4\pi\epsilon_0}\frac{1}{r^2}$
		$1 \mathbf{q} \cdot \mathbf{q}_0$
	4.	$\frac{1}{4\pi\epsilon_0} \frac{4^{-40}}{r}$
4 Posere ve vere	1.	Ť
4. Работа по пере-		Q·E·a
мещению заряда Q в электрическом A B	2.	Q·E·2a
	3.	0
в точку С равна:	4.	$-Q \cdot E \cdot a$
(силовые линии		$-Q \cdot E \cdot 2a$
поля Е лежат в	5.	
плоскости квадра-	5.	
та АВСО)		
5. Эквивалентная электрическая емкость двух	1.	C ₁ ·C ₂
конденсаторов, соединенных параллельно,	2.	C ₁ /C ₂
равна:	3.	$C_1 + C_2$
	4.	C ₁ - C ₂
		$C_1 \cdot C_2$
	5.	$\frac{c_1 + c_2}{C_1 + C_2}$
		$C_1 \cap C_2$

Примечание: Для ответа поставьте галочку в средней колонке около цифры 1, 2, 3, 4 или 5. Вариант 1. (Продолжение)

6. При увеличении площади пластин	1.	Уменьшается в 16 раз
конденсатора в 4 раза его электри-	2.	Уменьшается в 4 раза
ческая емкость С	3.	Увеличивается в 4 раза
	4.	Увеличивается в 16 раз
7. Плотность постоянного тока в проводнике определяется выражением:	1.	$\frac{\mathbf{q}}{t}$
	2.	ne <u>S</u>
	3.	ne< u >
	4.	$\frac{1}{\text{ne}}$
8. При последовательном соединении	1.	$U_1I_1 = U_2I_2$
проводников R_1 и R_2 выполняется	2.	$U_1 = U_2$
условие:	3.	$\mathbf{U} = \mathbf{U}_1 + \mathbf{U}_2$
	4.	$\frac{U_{1}^{2}}{R_{1}} = \frac{U_{2}^{2}}{R_{2}}$

9. Закон Био-Савара-Лапласа записывается в виде:	1.	$\mathbf{B} = \frac{\mu_0}{4\pi} \frac{\mathbf{q}}{\mathbf{r}^3} \left[\mathbf{v} \times \mathbf{r} \right]$
	2.	$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{q}}{\mathbf{r}^3} \mathbf{r};$
	3.	$d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{\mathbf{I}}{\mathbf{r}^3} [\mathbf{dl} \times \mathbf{r}]$
	4.	$B = \frac{\mu_0}{2\pi} \frac{I}{a}$
10. Реактивное сопротивление цепи	1.	$X = \omega L$
переменного тока, включающей со- противление R и индуктивность L, выражается формулой:	2.	$X = \frac{1}{\omega C}$
22pmmoron quentition	3.	$X = \omega L - \frac{1}{\omega C}$
	4.	$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$

Примечание: Для ответа поставьте галочку в средней колонке около цифры 1, 2, 3 или 4.

Вариант 2.

1. Модуль силы взаимодействия двух электрических зарядов в вакууме, удаленных один от другого на расстояние г, описыва-	1.	$\frac{1}{4\pi\epsilon_{_0}}\frac{\mathrm{q}}{\mathrm{r}}$
ется выражением:	2.	$\frac{1}{4\pi\epsilon_{_0}}\frac{qq_{_0}}{r^2}$
	3.	$\frac{1}{4\pi\epsilon_0}\frac{q}{r^2}$
	4.	$rac{1}{4\pi arepsilon_{_{0}}} rac{\mathbf{q} \cdot \mathbf{q}_{_{0}}}{\mathbf{r}}$
2. Ускорение, приобретаемое электроном в	1.	e·E
электрическом поле Е, равно:	2.	$\frac{\mathrm{e}}{\mathrm{m}}\mathrm{E}$
	3.	$\frac{v^2}{R}$
	4.	$\frac{\mathrm{d}\mathrm{v}}{\mathrm{d}\mathrm{t}}$
3. Потенциальная энергия заряда q ₀ , удаленного на расстояние г от заряда q,	1.	$\frac{1}{4\pi\epsilon_{_{0}}}\frac{\mathbf{q}\cdot\mathbf{q}_{_{0}}}{\mathbf{r}^{^{2}}}$

равна:	2.	$\frac{1}{4\pi\epsilon_{_0}} \frac{\mathbf{q} \cdot \mathbf{q}_{_0}}{\mathbf{r}}$
	3.	q₀·E
	4.	$\frac{1}{4\pi\epsilon_{_0}}\frac{\mathrm{q}}{\mathrm{r}}$
4. Работа по пе-	1.	Q·E·a
ремещению заряда	2.	Q·E·2a
Q в электрическом A B	3.	0
поле Е из точки В	4.	$-Q \cdot E \cdot a$
в точку D равна: (силовые линии поля E лежат в плоскости квадра- та ABCD)	5.	— Q·E·2 <i>a</i>
5. Эквивалентная электрическая емкость двух	1.	C ₁ ·C ₂
конденсаторов, соединенных последова-	2.	C ₁ /C ₂
тельно, равна:	3.	$C_1 + C_2$
	4.	C ₁ - C ₂
	5.	$\frac{\mathbf{C}_1 \cdot \mathbf{C}_2}{\mathbf{C}_1 + \mathbf{C}_2}$

Примечание: Для ответа поставьте галочку в средней колонке около цифры 1, 2, 3, 4 или 5.

Вариант 2. (Продолжение)

6. При увеличении расстояния между	1.	Уменьшается в 4 раза
пластинами конденсатора в 2 раза	2.	Уменьшается в 2 раза
его электрическая емкость С	3.	Увеличивается в 2 раза
	4.	Увеличивается в 4 раза
7. Закон Ома в интегральной форме выражается формулой:	1.	$I = \int_{S} \mathbf{j} \cdot d\mathbf{S}$
	2.	$I = \frac{dq}{dt}$
	3.	$\mathbf{j} = ne \langle \mathbf{u} \rangle$
	4.	$I = \frac{U}{R}$
8. При параллельном соединении проводников R_1 и R_2 выполняется условие:	1.	$\frac{U_{1}^{2}}{R_{1}} = \frac{U_{2}^{2}}{R_{2}}$
	2.	$\mathbf{I} = \mathbf{I}_1 = \mathbf{I}_2$
	3.	$I = I_1 + I_2$
	4.	$I_1 R_1^2 = I_2 R_2^2$
9. Магнитная индукция прямого бесконечно длинного проводника с током I в точке, удаленной от провод-	1.	$B = \frac{\mu_0}{2\pi} \frac{I}{a},$
ника на расстояние <i>a</i> , определяется формулой:	2.	$B = \frac{\mu_0}{2} \frac{I}{R}$

	3.	$B = \frac{\mu_0 I}{2} \frac{R^2}{\left(h^2 + R^2\right)^{3/2}}$
	4.	$B = \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2)$
10. Реактивное сопротивление цепи	1.	$X = \omega L$
переменного тока, включающей со- противление R и емкость C, выра- жается формулой:	2.	$X = \frac{1}{\omega C}$
Aueren wepanystem	3.	$X = \omega L - \frac{1}{\omega C}$
	4.	$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$

Примечание: Для ответа поставьте галочку в средней колонке около цифры 1, 2, 3 или 4.

Вопросы к экзамену (механика, термодинамика и молекулярная физика)

Механика

- 1. Материальная точка и ее кинематические характеристики. Векторы положения, перемещения, скорости и ускорения. Пройденный путь.
- 2. Движение точки с постоянным ускорением.
- 3. Движение точки по окружности. Угловые перемещение, скорость и ускорение точки.
- 4. Движение точки по окружности с постоянным угловым ускорением.
- 5. Сила и масса. Законы динамики Ньютона.
- 6. Импульс материальной точки, импульс силы. Уравнение изменения импульса, закон сохранения импульса.
- 7. Импульс системы материальных точек. Уравнение изменения импульса, закон сохранения импульса.
- 8. Центр масс системы и его свойства. Движение центра масс под действием внешних сил. Центры масс твердых тел простейших форм.
- 9. Применение законов сохранения к анализу упругого удара.
- 10. Применение законов сохранения к анализу неупругого удара.
- 11. Неконсервативные силы. Трение покоя, скольжения и качения. Значение трения в природе и технике.
- 12. Работа силы. Кинетическая энергия материальной точки, кинетическая энергия системы.
- 13. Полная механическая энергия системы. Закон сохранения механической энергии.
- 14. Потенциальные (консервативные) силы, потенциальная энергия системы.
- 15. Полная энергия механической системы. Закон сохранения энергии.
- 16. Поступательное и вращательное движение твердого тела.
- 17. Движение твёрдого тела относительно неподвижной оси. Момент импульса, момент инерции и кинетическая энергия вращающегося тела.
- 18. Основное уравнение динамики вращательного движения.
- 19. Момент инерции. Теорема Штейнера-Гюйгенса.
- 20. Момент инерции. Моменты инерции тонкого диска и кольца.
- 21. Момент инерции. Моменты инерции тонкого стержня и прямоугольного параллелепипела.
- 22. Закон всемирного тяготения. Свободное падение. Космические скорости.

- 23. Пружинный, математический, физический маятники. Собственные частоты и периоды колебаний этих маятников.
- 24. Затухающие колебания, их характеристики.
- 25. Вынужденные механические колебания. Явление резонанса.
- 26. Напряжение, абсолютная и относительная деформации. Закон Гука.
- 27. Давление в покоящейся жидкости, сила давления. Закон Паскаля.
- 28. Распределение давления с высотой в поле тяжести. Выталкивающая сила. Закон Архимеда. Условие плавания тел.
- 29. Стационарное течение жидкости. Уравнение Бернулли.
- 30. Упругие волны. Уравнение плоской бегущей волны и её характеристики.

Термодинамика и молекулярная физика

- 1. Изохорный процесс в идеальном газе. Закон Шарля. Изменение внутренней энергии, работа и теплота при этом процессе.
- 2. Изобарный процесс в идеальном газе. Закон Гей-Люссака. Изменение внутренней энергии, работа и теплота при этом процессе.
- 3. Изотермический процесс в идеальном газе. Закон Бойля-Мариотта. Изменение внутренней энергии, работа и теплота при этом процессе.
- 4. Первое начало термодинамики. Внутренняя энергия как функция состояния. Работа, теплота и теплоемкость системы.
- 5. Теплоемкость системы. Удельная и молярная теплоемкости. Теплоемкости Cp и Cv, идеального газа, уравнение Майера.
- 6. Второе начало термодинамики для равновесных процессов. Приведенная теплота и равенство Клаузиуса. Энтропия как функция состояния.
- 7. Второе начало термодинамики, его различные формулировки.
- 8. Круговые процессы. Цикл Карно, его к.п.д. Теоремы Карно.
- 9. Адиабатный процесс в идеальном газе. Уравнение Пуассона. Изменение внутренней энергии, работа и теплота при этом процессе.
- 10. Третье начало термодинамики (теорема Нернста). Недостижимость абсолютного нуля температуры.
- 11. Связь энтропии с термодинамической вероятностью. Формула Больцмана.
- 12. Молекулярно-кинетические представления о газах. Давление в газах, основное уравнение молекулярно-кинетической теории (в форме Клаузиуса).
- 13. Распределения молекул газа по скоростям. Функция распределения Максвелла. Наиболее вероятная, средняя и среднеквадратичная скорости молекул.
- 14. Распределение Больцмана. Барометрическая формула.
- 15. Средняя кинетическая энергия молекул газа, внутренняя энергия в молекулярно-кинетической теории.
- 16. Теорема о равномерном распределении энергии по степеням свободы. Связь внутренней энергии и теплоемкости с числом степеней свободы частиц.
- 17. Явления диффузии, теплопроводности и внутреннего трения (вязкости). Опытные законы, описывающие эти явления.
- 18. Реальные газы. Критическое состояние. Уравнение Ван-дер-Ваальса. Сравнение изотерм Ван-дер-Ваальса с экспериментом. Правило Максвелла.
- 19. Уравнение Ван-дер-Ваальса и критическое состояние. Связь постоянных Ван-дер-Ваальса с критическими и молекулярными параметрами.
- 20. Внутренняя энергия реального газа.
- 21. Фазовые переходы кристалл-жидкость-пар. Теплоты переходов, уравнения Клапейрона Клаузиуса.

- 22. Фазы и компоненты. Правило фаз Гиббса. Фазовая диаграмма (диаграмма состояний) кристалл-жидкость-пар. Тройная точка.
- 23. Влажность воздуха, методы ее измерения. Точка росы.
- 24. Поверхностный слой жидкости. Поверхностное натяжение, явление смачивания.
- 25. Давление под искривленной поверхностью. Формула Лапласа. Капиллярные явления.
- 26. Кристаллические и аморфные твердые тела. Кристаллическая решетка, типы связей частиц, симметрия кристаллов и анизотропия их физических свойств.
- 27. Тепловые свойства кристаллов, внутренняя энергия и теплоемкость, закон Дюлонга и Пти.
- 28. Жидкие кристаллы, классификация и особенности физических свойств.

Вопросы к экзамену (электричество и магнетизм, оптика, атомная и ядерная физика)

Электричество и магнетизм:

- 1. Взаимодействие зарядов. Закон Кулона.
- 2. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции.
- 3. Работа электрических сил. Потенциал электростатического поля. Разность потенциалов. Потенциал точечных зарядов и заряженной сферы.
- 4. Теорема Остроградского-Гаусса и ее применение.
- 5. Электрическая емкость. Единицы емкости. Емкость уединенной сферы.
- 6. Конденсатор. Емкость плоского конденсатора. Соединения конденсаторов.
- 7. Проводники в электрическом поле. Эквипотенциальность проводника. Напряженность поля у его поверхности.
- 8. Электрическое смещение (индукция) электростатического поля. Диэлектрическая проницаемость.
- 9. Электрическое поле в диэлектриках. Поляризация диэлектриков.
- 10. Энергия электростатического поля. Энергия заряженного конденсатора. Плотность энергии электростатического поля.
- 11. Постоянный электрический ток. Плотность тока. Сила тока. Единица силы тока.
- 12. Закон Ома для участка цепи. Электрическое сопротивление и проводимость.
- 13. Соединение сопротивлений.
- 14. Зависимость сопротивления от температуры. Сопротивление цилиндрического проводника. Дифференциальная форма закона Ома.
- 15. Сторонние силы. Электродвижущая сила. Закон Ома для замкнутой цепи.
- 16. Работа и мощность постоянного тока. Закон Джоуля-Ленца в дифференциальной форме.
- 17. Правила Кирхгофа.
- 18. Электролиз. Законы Фарадея.
- 19. Электрический ток в полупроводниках. Собственная и примесная проводимости.
- 20. Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Законы Ампера и Био-Савара-Лапласа.
- 21. Магнитное поле прямого, кругового и соленоидального токов.
- 22. Движение заряда в магнитном поле. Сила Лоренца.
- 23. Действие электрического и магнитного полей на движущийся заряд.
- 24. Электромагнитная индукция. Закон Фарадея. Правило Ленца.
- 25. Явление самоиндукции. Индуктивность.
- 26. Магнитные свойства вещества. Намагниченность. Магнитная проницаемость. Напряженность магнитного поля.
- 27. Емкость, индуктивность и активное сопротивление в цепи переменного тока.
- 28. Работа и мощность переменного тока. Действующие значения силы тока и напряжения.

Оптика, атомная и ядерная физика:

- 1. Геометрическая оптика. Законы отражения и преломления света.
- 2. Полное внутреннее отражение.
- 3. Принцип Ферма. Оптический путь. Скорость света.
- 4. Зеркала. Построение изображений.
- 5. Линзы. Построение изображений.
- 6. Оптическая сила. Формула тонкой линзы.
- 7. Основные фотометрические величины.
- 8. Интерференция света. Когерентность. Способы наблюдения интерференции.
- 9. Интерференция в тонких пленках. Полосы равной толщины.
- 10. Дифракция света. Принцип Гюйгенса-Френеля.
- 11. Дифракция света. Зоны Френеля.
- 12. Графическое сложение амплитуд при дифракции Френеля. Зонные пластинки.
- 13. Дифракция Фраунгофера от щели.
- 14. Дифракционная решетка.
- 15. Дифракция рентгеновских лучей.
- 16. Естественный и поляризованный свет. Закон Малюса.
- 17. Поляризация при отражении от диэлектриков. Закон Брюстера.
- 18. Двойное лучепреломление.
- 19. Вращение плоскости поляризации.
- 20. Тепловое излучение. Закон Кирхгофа.
- 21. Тепловое излучение. Законы Стефана-Больцмана и Вина. Формула Планка.
- 22. Оптическая пирометрия.
- 23. Фотоэффект. Законы внешнего фотоэффекта. Фотоумножители.
- 24. Внутренний и вентильный фотоэффекты.
- 25. Энергия и импульс фотона. Эффект Комптона.
- 26. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома.
- 27. Постулаты Бора. Теория атома водорода.
- 28. Квантовые числа. Принцип Паули.
- 29. Заполнение электронных оболочек. Таблица Менделеева.
- 30. Радиоактивность. Закон радиоактивного распада.
- 31. Строение ядра. Открытие протона и нейтрона.
- 32. Ядерные реакции. Энергия связи. Дефект масс.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценивание степени освоения обучающимися дисциплины осуществляется на основе «Положение о балльно-рейтинговой системе оценки успеваемости студентов МГОУ».

Сопоставимость рейтинговых показателей студента по разным дисциплинам и Балльнорейтинговой системы оценки успеваемости студентов обеспечивается принятием единого механизма оценки знаний студентов, выраженного в баллах, согласно которому 100 баллов это полное усвоение знаний по учебной дисциплине, соответствующее требованиям учебной программы.

Максимальный результат, который может быть достигнут студентом по каждому из Блоков рейтинговой оценки — 100 баллов.

Шкала соответствия рейтинговых оценок пятибалльным оценкам: 100-81 баллов - «отлично» (5); 80-61 баллов - «хорошо» (4); 60-41 баллов - «удовлетворительно» (3); до 40 баллов - «неудовлетворительно».

Ответ обучающегося на экзамене или зачёте оценивается в баллах с учетом шкалы соответствия рейтинговых оценок пятибалльным оценкам.

Оценка по 5-балльной системе		Оценка по 100-балльной системе		
5	отлично	81 - 100		
4	хорошо	61 - 80	зачтено	
3	удовлетворительно	41 - 60		
2	неудовлетворительно	0 - 40	не зачтено	

В экзаменационную ведомость и зачетную книжку выставляются оценки по пятибалльной шкале и рейтинговые оценки в баллах.

При получении студентом на экзамене или зачёте неудовлетворительной оценки в ведомость выставляется рейтинговая оценка в баллах (<40 баллов), соответствующая фактическим знаниям (ответу) студента.

Критерии оценки знаний студентов в рамках каждой учебной дисциплины или групп дисциплин вырабатываются преподавателями согласованно на кафедрах Университета исходя из требований образовательных стандартов.

Процедура оценивания знаний и умений состоит из следующий составных элементов:

- 1) учет посещаемости лекционных и лабораторных занятий осуществляется по ведомости, представленной ниже в форме таблицы;
- 2) текущий контроль.

Дисциплина: _. Группа №

Направление: Педагогическое образование

Московский государственный областной университет Ведомость учета посещения Факультет технологии и предпринимательства

Препо,	даватель:									
№ п/п	Фамилия И.О. студента				Π	locei	цение	занятий		Итого %
		1	2	3	4				18	
1.		+	-	+	-				+	61

66

Московский государственный областной университет Ведомость учета текущей успеваемости Факультет технологии и предпринимательства

Направление: Пе	дагогическое образование
Дисциплина:	
Группа №	
Преподаватель:	

No	Фами-	Сумма	а баллс	в, набр	ранных	Отметка об экза-	Под-	Об-	Ит	оговая	Подпись
Π /	лия		в сем	естре		мене	пись	щая	Ol	ценка	препо-
П	И.О.	По-	Pac-	Ла-	Тест	до 40 баллов	препо-	сум-	Циф	Про-	давателя
		ce-	чет-	бора-			дав.	ма	pa	пись	
		ще-	но-	тор-				бал-			
		ние	гра-	ные				лов			
			фиче-	рабо-	До 10			До			
			ская		бал-			100			
			рабо-	до 20	лов			бал-			
		до 10	та	бал-				ЛОВ			
		бал-		ЛОВ							
		ЛОВ	до 20								
			бал-								
			ЛОВ								
1.											
2.											
3.											

Посещение занятий:

- 8-10 баллов, если студент посетил 71-90% от всех занятий
- 5-7 балла, если студент посетил 51-70% от всех занятий
- 2-4 балла, если студент посетил 31-50% от всех занятий
- 0-1 баллов, если из всех занятий студент посетил 0-30% занятий

Расчетно-графическая работа:

- 15-20 баллов, если студент решил правильно 71-90% задания
- 10-14 баллов, если студент решил правильно 51-70% задания
- 5-9 баллов если студент решил правильно 31-50% задания
- 0-4 балла, если студент решил правильно 0-30% задания

Выполнение лабораторных работ:

- 15-20 баллов, если студент выполнил 71-90% от всех лабораторных работ
- 10-14 баллов, если студент выполнил 51-70% от всех лабораторных работ
- 5-9 баллов, если студент выполнил 31-50% от всех лабораторных работ
- 0-4 балла, если студент выполнил 0-30% от всех лабораторных работ

Тест:

- 8-10 баллов, если студент выполнил 71-90% от всех заданий
- 5-7 балла, если студент выполнил 51-70% от всех заданий
- 2-4 балла, если студент выполнил 31-50% от всех заданий
- 0-1 баллов, если студент выполнил 0-30% от всех заданий

Структура оценивания экзаменационного ответа

Уровни оценивания	Критерии оценивания	Баллы
Высокий	Полные и точные ответы на два вопроса экзаменационного билета. Свободное владение основными терминами и понятиями курса; последовательное и логичное изложение материала курса; законченные выводы и обобщения по теме вопросов; исчерпывающие ответы на вопросы при сдаче экзамена.	32-40

Оптимальный	Полные и точные ответы на два вопроса экзаменационного билета. Знание основных терминов и понятий курса; последовательное изложение материала курса; умение формулировать некоторые обобщения по теме вопросов; достаточно полные ответы на вопросы при сдаче экзамена.	22-31
Удовлетворительный	Полный и точный ответ на один вопрос экзаменационного билета. Удовлетворительное знание основных терминов и понятий курса; удовлетворительное знание и владение методами и средствами решения задач; недостаточно последовательное изложение материала курса; умение формулировать отдельные выводы и обобщения по теме вопросов.	12-21
Неудовлетворительный	Полный и точный ответ на один вопрос экзаменационного билета и менее.	0-11
	ного билета и менее.	U-11