Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Должность: Ректор
Дата подписания: 14.10.2025 09:53:18
Уникальный программный ключ: ПОСКИТА В СТОРГИТАТИРИ ОТ В СТОРГИТ

6b5279da4e034bff679172803da5b7b ССВЕЩЕНИЯ» (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ)

Физико-математический факультет

Кафедра фундаментальной физики и нанотехнологии

Согласовано

деканом физико-математического

факультета

«26» марта 2024 г. / /Кулешова Ю.Д./

Рабочая программа дисциплины

Специальный физический практикум

Направление подготовки

44.03.05 Педагогическое образование (с двумя профилями подготовки)

Профиль:

Физика и информатика

Квалификация

Бакалавр

Формы обучения

Очная, очно-заочная

Согласовано учебно-методической комиссией Рекомендовано кафедрой

физико-математического факультета Протокол «26» марта 2024 г. № 7

Председатель УМКом *Жинин* /Кулешова Ю.Д./

фундаментальной физики и

нанотехнологии

Протокол от «26» марта 2024 г. № 11

Зав. кафедрой /Холина С.А./

Мытищи 2024

Авторы-составители:

Васильчикова Е. Н., кандидат физико-математических наук, доцент, Барабанова Н. Н., кандидат физико-математических наук, доцент, Емельянов В. А., кандидат физико-математических наук, доцент.

Рабочая программа дисциплины «Специальный физический практикум» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки), утвержденного приказом МИНОБРНАУКИ РОССИИ от 22.02.2018 г. № 125

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)», и является обязательной для изучения.

Год начала подготовки (по учебному плану) 2024

СОДЕРЖАНИЕ

1.	Планируемые результаты обучения	4
2.	Место дисциплины в структуре образовательной программы	4
3.	Объем и содержание дисциплины	4
4.	Учебно-методическое обеспечение самостоятельной работы обучающихся	7
5.	Фонд оценочных средств для проведения текущей и промежуточной аттестации	9
	по дисциплине	
6.	Учебно-методическое и ресурсное обеспечение дисциплины	15
7.	Методические указания по освоению дисциплины	16
8.	Информационные технологии для осуществления образовательного процесса по	16
	дисциплине	
9.	Материально-техническое обеспечение дисциплины	16

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цель и задачи дисциплины

Цель освоения дисциплины «Специальный физический практикум»: формирование систематизированных знаний в области общей и экспериментальной физики, формирование и совершенствование у студентов навыков экспериментальной деятельности.

Задачи дисциплины: формирование единого подхода к анализу процессов различной физической природы на основе обобщения информации, полученной в ходе изучения различных дисциплин в модуле «Предметно-методический модуль по физике», приобретение навыков осуществления учебного и научного эксперимента, оценки результатов эксперимента, подготовки отчетных материалов о проведенной исследовательской работе.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

- УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач
- ПК-1. Способен осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Специальный физический практикум» входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)», и является обязательной для изучения.

Для освоения дисциплины «Специальный физический практикум» используются знания, умения, сформированные в процессе изучения следующих дисциплин: «Элементарная физика», «Высшая математика», «Методы математической обработки данных».

Компетенции, знания, навыки и умения, полученные в ходе изучения дисциплины, должны всесторонне использоваться и развиваться студентами в процессе последующей профессиональной деятельности.

Освоение дисциплины является необходимой основой для изучения таких дисциплин, как «Основы теоретической физики», «Школьный физический эксперимент».

Изучение дисциплины «Специальный физический практикум» является базой для дальнейшего обучения в бакалавриате, при прохождении практики и в профессиональной деятельности.

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Показатель объема дисциплины	Форма обучения	Форма обучения
показатель объема дисциплины	Очная, очно-заочная	Очная, очно-заочная
Объем дисциплины в зачетных	3	3
единицах		
Объем дисциплины в часах	108	108
Контактная работа:	54,2	48,2
Лабораторные занятия	54	48
из них в форме практической	54	48
подготовки	J 1	40
Контактные часы на промежуточную	0,2	0,2
аттестацию:	0,2	0,2
Зачет	0,2	0,2
Самостоятельная работа	46	52
Контроль	7,8	7,8

Формой промежуточной аттестации является зачет в 7 семестре.

3.2. Содержание дисциплины

Очная форма обучения

чная форма обучения	1		
	Количество часов		
Наименование разделов (тем)	Лабораторные занятия		
дисциплины с кратким содержанием	Общее кол- во	из них, в форме практическ ой подготовки	
Тема 1. Исследование эффекта Фарадея в жидкости.			
Оптическая активность: естественная и искусственная.	0	0	
Вращение плоскости поляризации света в магнитном поле,	8	8	
постоянная Верде.			
Тема 2. Дифракция света на ультразвуковых волнах.			
Возбуждение ультразвуковых волн. Дифракция света на	o	o	
ультразвуковых волнах: способы наблюдения. Дифракция Брэгга	8	8	
и Рамана–Ната.			
Тема 3. Оптические свойства анизотропных сред.			
Плоские волны в кристаллах. Интерференция поляризованного	8	8	
света. Хроматическая поляризация.			
Тема 4. Определение размеров элементарной ячейки с			
помощью дифракции рентгеновских лучей на			
поликристаллах.	6	6	
Индексы Миллера. Рентгеноструктурный анализ. Метод Лауэ и			
Дебая–Шерера.			
Тема 5. Импульсный метод измерений скорости и			
коэффициента поглощения ультразвуковых волн.			
Способы возбуждения ультразвуковых волн. Поглощение	6	6	
ультразвуковых волн в среде. Физические принципы		O	
ультразвукового метода измерения скорости волн и			
коэффициента поглощения.			
Тема 6. Интерферометр Фабри-Перо.			
Многолучевая интерференция. Характеристики интерферометра	6	6	
Фабри-Перо как спектрального прибора.			
Тема 7. Изучение поперечных волн в нагруженной струне.			
Вывод волнового уравнения, описывающего распространение			
волн в нагруженной струне. Решение уравнения в условиях	6	6	
закрепленных концов струны. Скорости волн. Условие			
образования стоячих волн в струне. Гармоники.			
Тема 8. Исследование распространения света в оптически			
неоднородной среде.	6	6	
Диффузия. Решение нестационарного уравнения диффузии.		-	
Определение коэффициента диффузии.	-		
Всего	54	54	

ПРАКТИЧЕСКАЯ ПОДГОТОВКА

Тема	Задание на практическую подготовку	Количест во часов
Тема 1. Исследование эффекта Фарадея в жидкости.	Разработать демонстрационный опыт по теме: « 1) Определение плоскости поляризации света. 2) Оптическая активность: естественная и искусственная (примеры). 3) Физический смысл постоянной Верде. 4) Эффект Фарадея: объяснение на основе электронной теории.» в виде фрагмента урока	8
Тема 2. Дифракция света на ультразвуковых волнах.	Разработать фронтальный опыт по теме: « 1. Дифракция света: определение. Принцип Гюйгенса—Френеля. 2. Особенности распространения света в неоднородной среде. 3. От чего зависит радиус кривизны лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока.	8
Тема 3. Оптические свойства анизотропных сред.	 Разработать работу физического практикума по теме: « 1. Волновые поверхности обыкновенной и необыкновенной волны, построение Гюйгенса. 2. Оптическая индикатриса. 3. Интерференция поляризованных волн. 4. Рассчитать амплитуду результирующей волны в случаях параллельных и скрещенных поляризаторов.» в виде фрагмента урока 	8
Тема 4. Определение размеров элементарной ячейки с помощью дифракции рентгеновских лучей на поликристаллах.	Разработать технологическую карту по теме: « 1. Рентгеновское излучение (тормозное и характеристическое): способ возбуждения, спектры. Коротковолновая граница сплошного рентгеновского спектра. 2. Закон Мозли. 3. Дифракция рентгеновского излучения на кристаллах: метод Лауэ и Дебая—Шерера. 4. Вывод формулы Вульфа—Брэггов.»	6
Тема 5. Импульсный метод	4. Вывод формулы Вульфа–Брэггов.» Разработать демонстрационный опыт по	6

измерений скорости и	теме: «	
коэффициента поглощения	1. Возбуждение и прием ультразвуковых	
ультразвуковых волн.	волн. Пьезоэффект.	
ультразвуковых волн.	2. Обоснование импульсного метода	
	<u> </u>	
	измерения скорости ультразвуковых	
	волн в жидкости и твердом теле.	
	3. Вывод расчетных формул для	
	скоростей и поглощения	
	ультразвуковых волн.	
	4. Что такое коэффициент поглощения	
	ультразвуковой волны, его	
	физический смысл?» в виде	
	фрагмента урока	
Тема 6. Интерферометр Фабри-	Разработать фронтальный опыт по теме:	
Перо.	«	
	1. Интерференция: определение,	
	когерентные волны, условие	
	максимумов и минимумов.	
	2. Полосы равного наклона и равной	
	толщины (примеры).	
	3. Многолучевая интерференция.	6
	Построение хода лучей в	O
	интерферометре Фабри-Перо.	
	Принципиальная схема наблюдения	
	интерференционных полос.	
	4. Вывести условие образования	
	светлых колец в интерферометре	
	Фабри-Перо.» в виде фрагмента	
	урока в классе технического профиля.	
Тема 7. Изучение поперечных	Разработать демонстрационный опыт по	
волн в нагруженной струне.	теме: «	
ry ry	1. Вывести волновое уравнение,	
	описывающее процесс	
	распространения волн в струне.	
	2. Решить данное уравнение, считая	6
	концы струны закрепленными.	J
	3. Уравнение стоячих волн.	
	Особенности стоячих волн, отличие	
	их от бегущих волн.» в виде	
	фрагмента урока	
Тема 8. Исследование	Разработать работу физического	
распространения света в	практикума по теме: «	
оптически неоднородной среде.	1. Диффузия.	
онти псеки псодпородной среде.	2. Решение нестационарного уравнения	6
	диффузии.	U
	диффузии. 3. Определение коэффициента	
	диффузии.» в виде фрагмента урока.	
Reare	диффузии. // в виде фрагмента урока.	54
Всего		54

	Количес	гво часов	
Наименование разделов (тем)	Лабораторные занятия		
дисциплины с кратким содержанием	Общее кол- во	из них, в форме практическ ой подготовки	
Тема 1. Исследование эффекта Фарадея в жидкости. Оптическая активность: естественная и искусственная. Вращение плоскости поляризации света в магнитном поле, постоянная Верде.	6	6	
Тема 2. Дифракция света на ультразвуковых волнах. Возбуждение ультразвуковых волн. Дифракция света на ультразвуковых волнах: способы наблюдения. Дифракция Брэгга и Рамана—Ната.	6	6	
Тема 3. Оптические свойства анизотропных сред. Плоские волны в кристаллах. Интерференция поляризованного света. Хроматическая поляризация.	6	6	
Тема 4. Определение размеров элементарной ячейки с помощью дифракции рентгеновских лучей на поликристаллах. Индексы Миллера. Рентгеноструктурный анализ. Метод Лауэ и Дебая—Шерера.	6	6	
Тема 5. Импульсный метод измерений скорости и коэффициента поглощения ультразвуковых волн. Способы возбуждения ультразвуковых волн. Поглощение ультразвуковых волн в среде. Физические принципы ультразвукового метода измерения скорости волн и коэффициента поглощения.	6	6	
Тема 6. Интерферометр Фабри-Перо. Многолучевая интерференция. Характеристики интерферометра Фабри-Перо как спектрального прибора.	6	6	
Тема 7. Изучение поперечных волн в нагруженной струне. Вывод волнового уравнения, описывающего распространение волн в нагруженной струне. Решение уравнения в условиях закрепленных концов струны. Скорости волн. Условие образования стоячих волн в струне. Гармоники.	6	6	
Тема 8. Исследование распространения света в оптически неоднородной среде. Диффузия. Решение нестационарного уравнения диффузии. Определение коэффициента диффузии.	6	6	
Всего	48	48	

ПРАКТИЧЕСКАЯ ПОДГОТОВКА

Тема	Задание на практическую подготовку	Количест во часов
Тема 1. Исследование эффекта	Разработать демонстрационный опыт по	
Фарадея в жидкости.	теме: «	6
	1) Определение плоскости поляризации	

света. 2) Оптическая активность: естественная и искусственная (примеры). 3) Физический смысл постоянной Верде. 4) Эффект Фарадея: объяснение на основе электронной теории.» в виде фрагмента урока Тема 2. Дифракция света на ультразвуковых волнах. 1. Дифракция света: определение. Принцип Гюйгенса—Френеля. 2. Особенности распространения света в неоднородной среде. 3. От чего зависит радиус кривизны лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред.
и искусственная (примеры). 3) Физический смысл постоянной Верде. 4) Эффект Фарадея: объяснение на основе электронной теории.» в виде фрагмента урока Тема 2. Дифракция света на ультразвуковых волнах. Разработать фронтальный опыт по теме: « 1. Дифракция света: определение. Принцип Гюйгенса—Френеля. 2. Особенности распространения света в неоднородной среде. 3. От чего зависит радиус кривизны лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракциюной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
3) Физический смысл постоянной Верде. 4) Эффект Фарадея: объяснение на основе электронной теории.» в виде фрагмента урока Тема 2. Дифракция света на ультразвуковых волнах. Разработать фронтальный опыт по теме: « 1. Дифракция света: определение. Принцип Гюйгенса—Френеля. 2. Особенности распространения света в неоднородной среде. 3. От чего зависит радиус кривизны лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
Верде. 4) Эффект Фарадея: объяснение на основе электронной теории.» в виде фрагмента урока Тема 2. Дифракция света на ультразвуковых волнах. Разработать фронтальный опыт по теме: « 1. Дифракция света: определение. Принцип Гюйгенса—Френеля. 2. Особенности распространения света в неоднородной среде. 3. От чего зависит радиус кривизны лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
4) Эффект Фарадея: объяснение на основе электронной теории.» в виде фрагмента урока Тема 2. Дифракция света на ультразвуковых волнах. 1. Дифракция света: определение. Принцип Гюйгенса—Френеля. 2. Особенности распространения света в неоднородной среде. 3. От чего зависит радиус кривизны лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
основе электронной теории.» в виде фрагмента урока Тема 2. Дифракция света на ультразвуковых волнах. 1. Дифракция света: определение. Принцип Гюйгенса—Френеля. 2. Особенности распространения света в неоднородной среде. 3. От чего зависит радиус кривизны лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
фрагмента урока Тема 2. Дифракция света на ультразвуковых волнах. 1. Дифракция света: определение. Принцип Гюйгенса—Френеля. 2. Особенности распространения света в неоднородной среде. 3. От чего зависит радиус кривизны лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
Тема 2. Дифракция света ультразвуковых волнах. на Принцип Гюйгенса—Френеля. Разработать фронтальный опыт по теме: « 1. Дифракция света: определение. Принцип Гюйгенса—Френеля. 2. Особенности распространения света в неоднородной среде. 6 3. От чего зависит радиус кривизны лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока. 9 азработать работу физического практикума по теме: «
ультразвуковых волнах. 1. Дифракция света: определение. Принцип Гюйгенса—Френеля. 2. Особенности распространения света в неоднородной среде. 3. От чего зависит радиус кривизны лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
1. Дифракция света: определение. Принцип Гюйгенса—Френеля. 2. Особенности распространения света в неоднородной среде. 3. От чего зависит радиус кривизны лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
1. Дифракция света: определение. Принцип Гюйгенса—Френеля. 2. Особенности распространения света в неоднородной среде. 3. От чего зависит радиус кривизны лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
Принцип Гюйгенса—Френеля. 2. Особенности распространения света в неоднородной среде. 3. От чего зависит радиус кривизны лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
неоднородной среде. 3. От чего зависит радиус кривизны лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
неоднородной среде. 3. От чего зависит радиус кривизны лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
3. От чего зависит радиус кривизны лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
лучей в неоднородной среде? 4. Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
4. Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
дифракционной решетке и на ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
ультразвуке.» в виде фрагмента урока. Тема 3. Оптические свойства анизотропных сред. Разработать работу физического практикума по теме: «
урока. Тема 3. Оптические свойства разработать работу физического практикума по теме: «
Тема 3. Оптические анизотропных сред. Свойства практикума по теме: « Разработать работу физического практикума по теме: «
анизотропных сред. практикума по теме: «
1. Волновые поверхности
обыкновенной и необыкновенной
волны, построение Гюйгенса.
2. Оптическая индикатриса.
3. Интерференция поляризованных 6
волн.
4. Рассчитать амплитуду
результирующей волны в случаях
параллельных и скрещенных
поляризаторов.» в виде фрагмента
урока
Тема 4. Определение размеров Разработать технологическую карту по
элементарной ячейки с помощью теме: «
дифракции рентгеновских лучей 1. Рентгеновское излучение (тормозное
на поликристаллах. и характеристическое): способ
возбуждения, спектры.
Коротковолновая граница сплошного 6
рентгеновского спектра.
2. Закон Мозли.
3. Дифракция рентгеновского излучения
на кристаллах: метод Лауэ и Дебая-
Шерера.
4. Вывод формулы Вульфа–Брэггов.»
Тема 5. Импульсный метод Разработать демонстрационный опыт по
измерений скорости и теме: «
коэффициента поглощения 1. Возбуждение и прием
ультразвуковых волн. ультразвуковых волн. Пьезоэффект. 6
2. Обоснование импульсного метода
измерения скорости ультразвуковых
волн в жидкости и твердом теле.

3. Вывод расчетных формул для скоростей и поглощения ультразвуковых волн. 4. Что такое коэффициент поглощения ультразвуковой волны, его физический смысл?» в виде фрагмента урока Тема 6. Интерферометр Фабри-Перо. Перо. Разработать фронтальный опыт по теме: « 1. Интерференция: определение, когерентные волны, условие максимумов и минимумов. 2. Полосы равного наклона и равной толщины (примеры). 3. Многолучевая интерференция. Построение хода лучей в интерферометре Фабри-Перо. Принципиальная схема наблюдения интерференционных полос.	6
ультразвуковых волн. 4. Что такое коэффициент поглощения ультразвуковой волны, его физический смысл?» в виде фрагмента урока Тема 6. Интерферометр Фабри-Перо. Перо. Разработать фронтальный опыт по теме: « 1. Интерференция: определение, когерентные волны, условие максимумов и минимумов. 2. Полосы равного наклона и равной толщины (примеры). 3. Многолучевая интерференция. Построение хода лучей в интерферометре Фабри—Перо. Принципиальная схема наблюдения	6
4. Что такое коэффициент поглощения ультразвуковой волны, его физический смысл?» в виде фрагмента урока Тема 6. Интерферометр Фабри-Перо. Тема 6. Интерферометр Фабри-Перо. Перо. Разработать фронтальный опыт по теме: « 1. Интерференция: определение, когерентные волны, условие максимумов и минимумов. 2. Полосы равного наклона и равной толщины (примеры). 3. Многолучевая интерференция. Построение хода лучей в интерферометре Фабри-Перо. Принципиальная схема наблюдения	6
ультразвуковой волны, его физический смысл?» в виде фрагмента урока Тема 6. Интерферометр Фабри- Перо. Разработать фронтальный опыт по теме: « 1. Интерференция: определение, когерентные волны, условие максимумов и минимумов. 2. Полосы равного наклона и равной толщины (примеры). 3. Многолучевая интерференция. Построение хода лучей в интерферометре Фабри–Перо. Принципиальная схема наблюдения	6
физический смысл?» в виде фрагмента урока Тема 6. Интерферометр Фабри-Перо. Разработать фронтальный опыт по теме: « 1. Интерференция: определение, когерентные волны, условие максимумов и минимумов. 2. Полосы равного наклона и равной толщины (примеры). 3. Многолучевая интерференция. Построение хода лучей в интерферометре Фабри—Перо. Принципиальная схема наблюдения	6
фрагмента урока Тема 6. Интерферометр Фабри- Перо. Разработать фронтальный опыт по теме: « 1. Интерференция: определение, когерентные волны, условие максимумов и минимумов. 2. Полосы равного наклона и равной толщины (примеры). 3. Многолучевая интерференция. Построение хода лучей в интерферометре Фабри—Перо. Принципиальная схема наблюдения	6
фрагмента урока Тема 6. Интерферометр Фабри- Перо. Разработать фронтальный опыт по теме: « 1. Интерференция: определение, когерентные волны, условие максимумов и минимумов. 2. Полосы равного наклона и равной толщины (примеры). 3. Многолучевая интерференция. Построение хода лучей в интерферометре Фабри—Перо. Принципиальная схема наблюдения	6
Тема 6. Интерферометр Перо. Фабри-Перо. Разработать фронтальный опыт по теме: « 1. Интерференция: определение, когерентные волны, условие максимумов и минимумов. 2. Полосы равного наклона и равной толщины (примеры). 3. Многолучевая интерференция. Построение хода лучей в интерферометре Фабри–Перо. Принципиальная схема наблюдения	6
 Перо. Интерференция: определение, когерентные волны, условие максимумов и минимумов. Полосы равного наклона и равной толщины (примеры). Многолучевая интерференция. Построение хода лучей в интерферометре Фабри–Перо. Принципиальная схема наблюдения 	6
 Интерференция: определение, когерентные волны, условие максимумов и минимумов. Полосы равного наклона и равной толщины (примеры). Многолучевая интерференция. Построение хода лучей в интерферометре Фабри–Перо. Принципиальная схема наблюдения 	6
когерентные волны, условие максимумов и минимумов. 2. Полосы равного наклона и равной толщины (примеры). 3. Многолучевая интерференция. Построение хода лучей в интерферометре Фабри–Перо. Принципиальная схема наблюдения	6
максимумов и минимумов. 2. Полосы равного наклона и равной толщины (примеры). 3. Многолучевая интерференция. Построение хода лучей в интерферометре Фабри–Перо. Принципиальная схема наблюдения	6
 Полосы равного наклона и равной толщины (примеры). Многолучевая интерференция. Построение хода лучей в интерферометре Фабри–Перо. Принципиальная схема наблюдения 	6
толщины (примеры). 3. Многолучевая интерференция. Построение хода лучей в интерферометре Фабри–Перо. Принципиальная схема наблюдения	6
3. Многолучевая интерференция. Построение хода лучей в интерферометре Фабри–Перо. Принципиальная схема наблюдения	6
Построение хода лучей в интерферометре Фабри–Перо. Принципиальная схема наблюдения	6
интерферометре Фабри–Перо. Принципиальная схема наблюдения	
Принципиальная схема наблюдения	
-	
4. Вывести условие образования	
светлых колец в интерферометре	
Фабри–Перо.» в виде фрагмента	
урока в классе технического профиля.	
Тема 7. Изучение поперечных Разработать демонстрационный опыт по	
волн в нагруженной струне.	
1. Вывести волновое уравнение,	
описывающее процесс	
распространения волн в струне.	_
, , , , , , , , , , , , , , , , , , , ,	6
концы струны закрепленными.	
3. Уравнение стоячих волн.	
Особенности стоячих волн, отличие	
их от бегущих волн.» в виде	
фрагмента урока	
Тема 8. Исследование Разработать работу физического	
распространения света в практикума по теме: «	
оптически неоднородной среде. 1. Диффузия.	
2. Решение нестационарного уравнения	6
диффузии.	
3. Определение коэффициента	
диффузии.» в виде фрагмента урока.	
Всего	18

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ CAMOCTOЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Темы для	Изучаемые	Кол-во	Количе	Формы	Методичес	Формы
самостоятель	вопросы	часов	ство	самостоят	кие	отчетнос
ного		очной	часов	•	обеспечен	ТИ
изучения		формы	0ЧНО-	работы	ия	
			заочно			
			й			

				формы			
1.	Поляризованн ый свет. Линейно поляризованн ый и эллиптически поляризованн ый свет.	1.Способы получения поляризова нного света. 2.Принцип работы и устройство полутенево го анализатора	4	6	Работа с литератур ой, сетью Интернет, консульта ции, практичес кие задания.	Учебно- методическ ое и ресурсное обеспечени е дисциплин ы (п. 6.1, 6.2, 6.3)	лаборато рная работа
2.	Волны в линиях передачи. Идеальная линия передачи.	1.Телеграф ные уравнения.	4	6	Работа с литератур ой, сетью Интернет, консульта ции, практичес кие задания.	Учебно- методическ ое и ресурсное обеспечени е дисциплин ы (п. 6.1, 6.2, 6.3)	лаборато рная работа
3.	Понятие дифракции. Дифракция Френеля и Фраунгофера.	1.Зоны Френеля. 2.Принципи альная схема наблюдения дифракции Фраунгофе ра.	4	4	Работа с литератур ой, сетью Интернет, консульта ции, практичес кие задания.	Учебно- методическ ое и ресурсное обеспечени е дисциплин ы (п. 6.1, 6.2, 6.3)	лаборато рная работа
4.	Двойное лучепреломле ние в кристалле.	1.Особенно сти распростра нения света в анизотропн ых средах. 2.Интерфер енция сходящихся поляризова нных лучей, изохроматы .	4	4	Работа с литератур ой, сетью Интернет, консульта ции, практичес кие задания.	Учебно- методическ ое и ресурсное обеспечени е дисциплин ы (п. 6.1, 6.2, 6.3)	доклад
5.	Свойства рентгеновског о излучения и методы его получения.	1.Сплошное излучение. 2.Коротков олновая граница сплошного	4	4	Работа с литератур ой, сетью Интернет, консульта ции,	Учебно- методическ ое и ресурсное обеспечени е	лаборато рная работа

		рентгеновск ого спектра. 3. Характер истическое излучение. Закон Мозли.			практичес кие задания.	дисциплин ы (п. 6.1, 6.2, 6.3)	
6.	Температурны е волны в твердых телах.	1.Скорости волн. 2.Затухание волн и теплообмен с окружающе й средой.	4	4	Работа с литератур ой, сетью Интернет, консульта ции, практичес кие задания, подготовк а докладов и презентац ий	Учебно- методическ ое и ресурсное обеспечени е дисциплин ы (п. 6.1, 6.2, 6.3)	Доклад
7.	Ультразвуков ые волны в твердых телах и газах.	1.Скорости продольных и поперечных волн. 2.Поглощен ие волн.	4	4	Работа с литератур ой, сетью Интернет, консульта ции, практичес кие задания.	Учебно- методическ ое и ресурсное обеспечени е дисциплин ы (п. 6.1, 6.2, 6.3)	доклад
8.	Вывод формул Френеля.	1. Уравнени е плоских монохромат ических волн. 2. Граничны е условия. 3. Угол полного внутреннег о отражения.	4	4	Работа с литератур ой, сетью Интернет, консульта ции, практичес кие задания.	Учебно- методическ ое и ресурсное обеспечени е дисциплин ы (п. 6.1, 6.2, 6.3)	ание
9.	Интерференци я света.	_	4	4	Работа с литератур ой, сетью Интернет, консульта ции, практичес кие задания.	Учебно- методическ ое и ресурсное обеспечени е дисциплин ы (п. 6.1, 6.2, 6.3)	тестиров ание

10.	Волны в нагруженной струне.	1.Волновое уравнение и его решение при различных граничных условиях. 2.Стоячие и бегущие волны.	4	4	Работа с литератур ой, сетью Интернет, консульта ции, практичес кие задания.	Учебно- методическ ое и ресурсное обеспечени е дисциплин ы (п. 6.1, 6.2, 6.3)	доклад
11.	Особенности распространен ия света в оптически неоднородной среде.	1. Уравнени е траектории луча. 2. Построен ие волнового фронта по принципу Гюйгенса-Френеля.	3	4	Работа с литератур ой, сетью Интернет, консульта ции, практичес кие задания.	Учебно- методическ ое и ресурсное обеспечени е дисциплин ы (п. 6.1, 6.2, 6.3)	доклад
12.	Волновые свойства частиц.	1.Волны де- Бройля. 2.Эксперим ентальные доказательс тва волновых свойств частиц.	3	4	Работа с литератур ой, сетью Интернет, консульта ции, практичес кие задания.	Учебно- методическ ое и ресурсное обеспечени е дисциплин ы (п. 6.1, 6.2, 6.3)	доклад
Итого		l	46	52			

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код и наименование компетенции	Этапы формирования
УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	1. Работа на учебных занятиях. 2. Самостоятельная работа.
ПК-1. Способен осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач	,

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оцени	Уровень	Этапы	Описание	Критерии	Шкала

ваемые	сформирован	формирования	показателей	оцениван	оценив
компет енции	ности			ки	ания
УК-1	Пороговый	1. Работа на учебных занятиях. 2. Самостоятельн ая работа.	знать основные принципы критического анализа; уметь получать новые знания на основе анализа, синтеза и других методов исследования; осуществлять поиск информации и решений на основе теоретического изучения проблемы или экспериментальных данных	лаборатор ные работы, доклад, тестирова ние	Шкала оценив ания лабора торных работ, шкала оценив ания доклад а, шкала оценив ания тестов ых задани й
	Продвинутый	1. Работа на учебных занятиях. 2. Самостоятельн ая работа.	знать принципы критического анализа; уметь получать новые знания на основе анализа, синтеза и других методов исследования; систематизировать данные по научным проблемам, относящимся к профессиональной области; осуществлять поиск информации и решений на основе теоретического изучения проблемы или экспериментальных данных; владеть методами и приемами интеллектуальной деятельности (анализа, синтеза и др.) для исследования профессиональных вопросов.	лаборатор ные работы, доклад, тестирова ние, практичес кая подготовк а	Шкала оценив ания лабора торных работ, шкала оценив ания доклад а, шкала оценив ания тестов ых задани й, шкала оценив ания практи ческой подгот овки
ПК-1	Пороговый	1. Работа на учебных занятиях. 2.	знать основные модели задач в рамках дисциплины с учетом их границ применимости;	лаборатор ные работы, доклад,	Шкала оценив ания лабора

	Самостоятельн	уметь грамотно	тестирова	торных
	ая работа.	использовать в профессиональной деятельности базовые знания фундаментальных разделов физики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей	ние	работ, шкала оценив ания доклад а, шкала оценив ания тестов ых задани й
Продвинутый	1. Работа на учебных занятиях. 2. Самостоятельн ая работа.	задач в рамках дисциплины с учетом их границ применимости; уметь грамотно использовать в профессиональной деятельности базовые знания фундаментальных разделов физики, математики и информатики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей владеть методами использования в профессиональной деятельности базовых знаний фундаментальных разделов математики для создания математических моделей типовых профессиональных задач и интерпретации полученных результатов с учетом границ полученных результатов с учетом границ применимости моделей границ полученных результатов с учетом границ применимости моделей границ применимости моделей границ применимости моделей	лаборатор ные работы, доклад, тестирова ние, практичес кая подготовк а	Шкала оценив ания лабора торных работ, шкала оценив ания доклад а, шкала оценив ания тестов ых задани й, шкала оценив ания практи ческой подгот овки

Шкала и критерии оценивания написания доклада

Уровни оценивания	Критерии оценивания	Баллы
Высокий (отлично)	Если студент отобразил в докладе 71-90% выбранной темы.	8-10
Оптимальный (хорошо)	Если студент отобразил в докладе 51-70% выбранной	5-7

	темы	
Удовлетворительный	Если студент отобразил в докладе 31-50% выбранной	2-4
э довлетворительный	темы	∠ -
Неудовлетворительный	Если студент отобразил в докладе 0-30% выбранной	0-1
	темы	0-1

Шкала и критерии оценивания тестовых заданий

Уровни оценивания	Критерии оценивания	Баллы
Высокий (отлично)	Если студент решил 71-90% от всех задач	8-10
Оптимальный (хорошо)	Если студент решил 51-70% от всех задач	5-7
Удовлетворительный	Если студент решил 31-50% от всех задач	2-4
Неудовлетворительный	Если студент решил 0-30% от всех задач	0-1

Шкала и критерии оценивания лабораторных работ

	and the oper operation become	
Уровни оценивания	Критерии оценивания	Баллы
Высокий (отлично)	Если студент выполнил 71-90% от лабораторных работ	8-10
Оптимальный (хорошо)	Если студент выполнил 51-70% от лабораторных работ	5-7
Удовлетворительный	Если студент выполнил 31-50% от лабораторных работ	2-4
Неудовлетворительный	Если студент выполнил 0-30% от лабораторных работ	0-1

Шкала оценивания практической подготовки

Критерии оценивания	Баллы
высокая активность на практической подготовке, выполнил всю лабораторную работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально смонтировал необходимое оборудование, все опыты провел в условиях и режимах, обеспечивающих получение правильных результатов и выводов; в отчете правильно и аккуратно выполнил все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполнил анализ погрешностей	8-10
средняя активность на практической подготовке, были выполнены требования к оценке «отлично», но обучающийся допустил неточности	5-7
низкая активность на практической подготовке, в ходе проведения опыта и измерений были допущены ошибки.	2-4
результаты работы не позволяют сделать правильных выводов или работа совсем не выполнена	0-1

5.3. Типовые контрольные задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерные вопросы для тестовых заданий

- 1. Кварцевую пластину, вырезанную параллельно оптической оси, поместили между двумя скрещенными николями. При повороте пластины на угол α интенсивность проходящего через систему света:
- 1) Не изменится
- 2) Равна нулю при $\alpha = n \cdot \pi/2$
- 3) Равна нулю при $\alpha = n \cdot \pi/4$

- 2. В интерферометре Фабри-Перо наблюдается система интерференционных полос. Номер интерференционного максимума:
- 1) Увеличивается с увеличением номера кольца
- 2) Уменьшается с увеличением номера кольца
- 3) Не изменяется
- 3. Дифракционная решетка имеет 100 штрихов. С ее помощью можно наблюдать отдельно две линии спектра с длинами волн $\lambda_1 = 560$ нм и $\lambda_2 = 560.8$ нм, начиная с максимума порядка:
- 1) 5
- 2) 7
- 3) 2

Примерные варианты лабораторных работ

примерные варианты лаоораторных раоот			
Тема занятия	Ауд. занятия	Самостоятельная работа Вопросы к защите	
Работа № 1. Эффект Фарадея.	Выполнение и защита лабораторной работы	1. Что такое плоскость поляризации? 2. Оптическая активность: естественная и искусственная (примеры). 3. Эффект Фарадея, объяснение на основе электронной теории. 4. Физический смысл постоянной Верде. 5. Схема экспериментальной установки, устройство полутеневого анализатора.	
Работа № 3. Дифракция света на ультразвуковых волнах.	Выполнение и защита лабораторной работы	1.Дифракция света. Принцип Гюйгенса—Френеля. 2.Распространение света в неоднородной среде. 3.От чего зависит радиус кривизны лучей в неоднородной среде? 4.Дифракция Рамана—Ната и дифракция Брэгга. 5.Сравнить дифракцию света на дифракционной решетке и на ультразвуке.	

Задания для практической подготовки

- 1. Разработать демонстрационный опыт по теме: «
 - 1) Определение плоскости поляризации света.
 - 2) Оптическая активность: естественная и искусственная (примеры).
 - 3) Физический смысл постоянной Верде.
 - 4) Эффект Фарадея: объяснение на основе электронной теории.» в виде фрагмента урока
- 2. Разработать фронтальный опыт по теме: «
 - 1) Дифракция света: определение. Принцип Гюйгенса-Френеля.
 - 2) Особенности распространения света в неоднородной среде.
 - 3) От чего зависит радиус кривизны лучей в неоднородной среде?
- 4) Сравнить дифракцию света на дифракционной решетке и на ультразвуке.» в виде фрагмента урока.
- 3. Разработать работу физического практикума по теме: «
 - 1) Волновые поверхности обыкновенной и необыкновенной волны, построение Гюйгенса.
 - 2) Оптическая индикатриса.
 - 3) Интерференция поляризованных волн.

- 4) Рассчитать амплитуду результирующей волны в случаях параллельных и скрещенных поляризаторов.» в виде фрагмента урока
- 4. Разработать технологическую карту по теме: «
- 1) Рентгеновское излучение (тормозное и характеристическое): способ возбуждения, спектры. Коротковолновая граница сплошного рентгеновского спектра.
 - 2) Закон Мозли.
 - 3) Дифракция рентгеновского излучения на кристаллах: метод Лауэ и Дебая-Шерера.
- 4) Вывод формулы Вульфа-Брэггов.» в виде фрагмента урока в классе технического профиля.
- 5. Разработать демонстрационный опыт по теме: «
 - 1) Возбуждение и прием ультразвуковых волн. Пьезоэффект.
- 2) Обоснование импульсного метода измерения скорости ультразвуковых волн в жидкости и твердом теле.
 - 3) Вывод расчетных формул для скоростей и поглощения ультразвуковых волн.
- 4) Что такое коэффициент поглощения ультразвуковой волны, его физический смысл?» в виде фрагмента урока
- 6. Продемонстрировать демонстрационный опыт по теме: «
 - 1) Интерференция: определение, когерентные волны, условие максимумов и минимумов.
 - 2) Полосы равного наклона и равной толщины (примеры).
- 3) Многолучевая интерференция. Построение хода лучей в интерферометре Фабри–Перо. Принципиальная схема наблюдения интерференционных полос.
- 4) Вывести условие образования светлых колец в интерферометре Фабри–Перо.» в виде фрагмента урока в классе технического профиля.
- 7. Разработать фронтальный опыт по теме: «
 - 1) Вывести волновое уравнение, описывающее процесс распространения волн в струне.
 - 2) Решить данное уравнение, считая концы струны закрепленными.
- 3) Уравнение стоячих волн. Особенности стоячих волн, отличие их от бегущих волн.» в виде фрагмента урока
- 8. Разработать работу физического практикума по теме: «
 - 1) Диффузия.
 - 2) Решение нестационарного уравнения диффузии.
 - 3) Определение коэффициента диффузии.» в виде фрагмента урока.

Примерные варианты задач к защите лабораторных работ

- 1. Определить постоянную Верде R для железа, если известно, что слой железа толщиной 0,001 см поворачивает плоскость поляризации на 130° в поле H=10000 Э при λ =589 нм.
- 2. Выразить постоянную Верде R через показатели преломления n+ и n- для право- и лево поляризованного по кругу света, проходящего вдоль линий магнитного поля.
- 3. В кювету, имеющую форму параллелепипеда, налит толуол, в котором возбуждаются ультразвуковые волны с помощью колебаний пластинки пьезокварца. Пластина кварца установлена параллельно боковым стенкам кюветы. Ультразвуковые волны, возбуждаемые пластинкой, отражаются от одной из боковых стенок кюветы. В результате в жидкости образуется стоячая ультразвуковая волна. Чему равен пространственный период изменения показателя преломления жидкости при наличии в ней стоячей ультразвуковой волны?
- 4. При освещении интерферометра Фабри-Перо расходящимся монохроматическим светом с длиной волны λ в фокальной плоскости линзы возникает интерференционная картина: система концентрических колец. Расстояние между отражающими поверхностями интерферометра равно d. Определить, как зависит от порядка интерференции: а) расположение колец, б) угловая ширина полос интерференции.

Примерные темы докладов

- 1. Отражение и преломление плоских электромагнитных волн. Формулы Френеля.
- 2. Температурные волны в твердых телах.

Примерные вопросы к зачету

- 1. Эффект Фарадея.
- 2. Дифракция света на ультразвуке.
- 3. Дифракция рентгеновского излучения на кристаллической решетке. Формула Вульфа-Брэгга.
- 4. Волновое уравнение для поперечных волн в струне.
- 5. Бегущие и стоячие волны.
- 6. Затухание волн. Физический смысл коэффициента поглощения.
- 7. Поверхностные и объемные волны.
- 8. Методы определения скорости и коэффициента поглощения ультразвуковых волн в различных средах.

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценивание степени освоения обучающимися дисциплины осуществляется на основе «Положение о балльно-рейтинговой системе оценки успеваемости студентов ГУП».

Сопоставимость рейтинговых показателей студента по разным дисциплинам и балльнорейтинговой системы оценки успеваемости студентов обеспечивается принятием единого механизма оценки знаний студентов, выраженного в баллах, согласно которому 100 баллов это полное усвоение знаний по учебной дисциплине, соответствующее требованиям учебной программы.

Максимальный результат, который может быть достигнут студентом по каждому из Блоков рейтинговой оценки — 100 баллов.

В зачетно-экзаменационную ведомость и зачетную книжку выставляются оценки по пятибалльной шкале и рейтинговые оценки в баллах.

При получении студентом на зачёте неудовлетворительной оценки в ведомость выставляется рейтинговая оценка в баллах (меньше 40 баллов), соответствующая фактическим знаниям (ответу) студента.

Критерии оценки знаний студентов в рамках каждой учебной дисциплины или групп дисциплин вырабатываются преподавателями согласованно на кафедрах университета исходя из требований образовательных стандартов.

Шкала опенивания ответа на зачете

HIRAHA VICINDAHAN VIDETA HA SA ICIC	
Критерии оценивания	Баллы
Свободное владение основными терминами и понятиями курса; последовательное и логичное изложение материала курса; законченные выводы и обобщения по теме вопросов; исчерпывающие ответы на вопросы при сдаче зачета. Полностью выполнены и защищены лабораторные работы.	15-20
Знание основных терминов и понятий курса; последовательное изложение материала курса; умение формулировать некоторые обобщения по теме вопросов; достаточно полные ответы на вопросы при сдаче зачета. Полностью выполнены и защищены лабораторные работы.	8-14
Удовлетворительное знание основных терминов и понятий курса; удовлетворительное знание и владение методами и средствами решения задач; недостаточно последовательное изложение материала курса; умение формулировать отдельные выводы и обобщения по теме вопросов. Выполнено и защищено не менее 75 % лабораторных работ.	4-7
Ответ, не соответствующий вышеуказанным критериям выставления оценок.	0-3

Итоговая шкала выставления оценки по дисциплине.

Количество баллов	Оценка по традиционной шкале
81-100	Зачтено
61-80	Зачтено
41-60	Зачтено
0-40	Не зачтено

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ 6.1. Основная литература

- 1. Аброшина, Л.С. Специальный физический практикум: ч.2 / Л. С. Аброшина, Ю. А. Башлачев, Е. Н. Васильчикова. М.: МГОУ, 2012. 46с. Текст: непосредственный
- 2. Башлачев, Ю.А Специальный физический практикум: сб. лабораторных работ в 2-х ч. ч.1 / Ю. А. Башлачев, Е. Н. Васильчикова. М.: МГОУ, 2020. 76с. Текст: непосредственный
- 3. Савельев, И.В. Курс физики: учеб.пособие для вузов в 3-х т. т.2. электричество; колебания и волны; волновая оптика. СПб. : Лань, 2018. 468с. Текст: непосредственный

6.2. Дополнительная литература

- 1. Бондарев, Б. В. Курс общей физики в 3 кн. Книга 2: электромагнетизм, оптика, квантовая физика : учебник для вузов / Б. В. Бондарев, Н. П. Калашников, Г. Г. Спирин. 2-е изд. Москва : Юрайт, 2023. 441 с. Текст : электронный. URL: https://urait.ru/bcode/532032
- 2. Бутиков, Е.И. Оптика : учеб. пособие. 3-е изд. СПб. : Лань, 2019. 608с. Текст: непосредственный
- 3. Варданян, В. А. Основы физической оптики : учебно-методическое пособие для лабораторных работ. Новосибирск : Сибирский государственный университет телекоммуникаций и информатики, 2022. 58 с. Текст : электронный. URL: https://www.iprbookshop.ru/126675.html
- 4. Гороховатский, Ю. А. Оптика : учебник и практикум для вузов / Ю. А. Гороховатский, И. И. Худякова . 2-е изд. Москва : Юрайт, 2023. 220 с. Текст : электронный. URL: https://urait.ru/bcode/517433
- 5. Горячев, Б. В. Общая физика. Оптика. Практические занятия : учебное пособие для вузов / Б. В. Горячев, С. Б. Могильницкий. Москва : Юрайт, 2022. 92 с. Текст : электронный. URL: https://urait.ru/bcode/490243
- 6. Кошкин, Н.И. Оптика : лекционный курс : учеб.пособие / Н. И. Кошкин, Е. Н. Васильчикова, Н. Н. Барабанова. М. : МГОУ, 2015. 128с. Текст: непосредственный
- 7. Кузьмичева, В. А. Оптика : курс лекций. Москва : Московская государственная академия водного транспорта, 2020. 79 с. Текст : электронный. URL: https://www.iprbookshop.ru/97317.html
- 8. Паршаков, А. Н. Оптика в ключевых задачах : учебное пособие. 2-е изд. Долгопрудный : Издательский Дом «Интеллект», 2022. 287 с. Текст : электронный. URL: https://www.iprbookshop.ru/119636.html
- 9. Суханов, И. И. Основы оптики. Теория изображения : учебное пособие для вузов. 2-е изд. Москва : Юрайт, 2023. 111 с. Текст : электронный. URL: https://urait.ru/bcode/514212
- 10. Уварова, И. Ф. Физика. Оптика : учебное пособие для практических занятий. Москва : МИСиС, 2022. 56 с. Текст : электронный. URL: https://www.iprbookshop.ru/129531.html

6.3. Ресурсы информационно-телекоммуникационной сети «Интернет»

- 1. http://mgou.ru/index.php?option=com_content&task=view&id=48&Itemid=614
- 2. Научная электронная библиотека http://elibrary.ru

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

- 1. Методические рекомендации по подготовке к практическим занятиям.
- 2. Методические рекомендации по организации самостоятельной работы по дисциплинам.

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows Microsoft Office Kaspersky Endpoint Security

Информационные справочные системы:

Система ГАРАНТ

Система «КонсультантПлюс»

Профессиональные базы данных

fgosvo.ru – Портал Федеральных государственных образовательных стандартов высшего образования

pravo.gov.ru - Официальный интернет-портал правовой информации

www.edu.ru – Федеральный портал Российское образование

Свободно распространяемое программное обеспечение, в том числе отечественного производства

ОМС Плеер (для воспроизведения Электронных Учебных Модулей)

7-zip

Google Chrome

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения учебных занятий, оснащенные оборудованием и техническими средствами обучения: учебной мебелью, доской, демонстрационным оборудованием, персональными компьютерами, проектором;
- помещения для самостоятельной работы, оснащенные компьютерной техникой с возможностью подключением к сети «Интернет» и обеспечением доступа к электронной информационно-образовательной среде.