Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Дата подписания: 24.10.2024 14:2¹ НИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

уникальны федеральное досударственное боджетное образовательное учреждение высшего образования 6b5279da4e034bff679172803da5b**жГ9СУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ**»

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ)

Факультет естественных наук Кафедра теоретической и прикладной химии

Согласовано и.о. декана факультета « 02 » lecolle

/Алексеев А. Г./

Рабочая программа дисциплины

Бионеорганическая химия

Направление подготовки 06.03.01 Биология

Профиль:

Биомедицинские технологии

Квалификация

Бакалавр

Форма обучения

Очная

Согласовано учебно-методической комиссией Рекомендовано кафедрой теоретической Факультета естественных наук

и прикладной химии

Протокол от « 31 » 0.5 2023 г. № +/

Зав. кафедрой

/Bасильев H. В./

Мытищи 2023

Автор-составитель:

Свердлова Наталья Дмитриевна, кандидат химических наук, доцент

Рабочая программа дисциплины «Бионеорганическая химия» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 06.04.02 Биология, утвержденного приказом МИНОБРНАУКИ РОССИИ от 07.08. 2020 г., № 920

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока1 «Дисциплины(модули)» и является элективной дисциплиной.

Год начала подготовки (по учебному плану) 2023

СОДЕРЖАНИЕ

1.	ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ	4
2.	МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	4
3.	ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	4
4. ОБ	УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ УЧАЮЩИХСЯ	7
5. ПР	ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ	9
6.	УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Ошибка! Закладка не определена.	
7. Зак	МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ Ошибк гладка не определена.	a!
8. не (ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ Ошибка! Заклад определена.	ка
	ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ Ошибка! Закладка определена.	не
	9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Ошибк Закладка не определена.	a!

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цель и задачи дисциплины

Цель освоения дисциплины -дать представление об основных свойствах и методах исследования бионеорганических соединений, научить использовать базис законов и понятий общей, неорганической, координационной и биохимии для усвоения и интерпретации углубленных знаний по специфическим разделам химии на стыке наук.

Задачи дисциплины:

- показать роль бионеорганической химии в системе химических и биологических наук;
- -сформировать представления о комплексообразовании биометаллов с неорганическими и органическими лигандами;
- -рассмотреть физиологические функции данных комплексов в организме в норме, а также негативные воздействия комплексов тяжелых металлов;
- показать применение комплексов биометаллов с различными лигандами в медицине и биологии.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

ДПК -1. Способен проводить научно-исследовательские лабораторные работы и экспертизу биологического материала

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока1 «Дисциплины(модули)» и является элективной дисциплиной.

Освоение курса «Бионеорганическая химия" является основой изучения дисциплин «Физиология и биохимия растений», "Физиология человека и животных", "Основы физиологического действия фармацевтических препаратов", а также для прохождения специализированной практики по биотехнологии и успешной последующей профессиональной деятельности.

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Показатель объема дисциплины	Форма обучения
	Очная
Объем дисциплины в зачетных единицах	2
Объем дисциплины в часах	72
Контактная работа:	32,2
Лекции	16
Лабораторные работы	16
Из них в форме практической подготовки	16
Контактные часы на промежуточную	0,2
аттестацию:	
Зачет	0,2
Самостоятельная работа	32
Контроль	7,8

Форма промежуточного контроля - зачет в 5 семестре.

3.2.Содержание дисциплины

	Количество часов		сов
Наименование разделов (тем) дисциплины с кратким содержанием	Лекц	Обще е коли честв о	Из них, в форме практи ческой подгото вки
Тема 1 . Предмет и области исследования	1		
бионеорганической химии. Место бионеорганической химии среди традиционных химических и биологических дисциплин. Задачи и проблемы бионеорганической химии, основные направления развития. Различия в объекте исследования бионеорганической, элементорганической, органической и неорганической химии. Предмет бионеорганической химии - структура и функции металлоферментов; взаимодействие металлов с биомолекулами; направленное создание биологически активных соединений металлов			
Тема 2. Биологическая роль неметаллов. имические элементы в биосфере. Макро- и микроэлементы. Кислород и его роль в дыхательном цикле живых организмов. Биологическая роль озона. Углерод, значение его неорганических соединений для человека. Физиологическая роль водорода в составе воды. Азот: воздействие неорганических соединений азота на живые организмы. Проблема связанного азота. Фосфор - элемент-органоген и его роль в обмене веществ. Сера и ее роль в метаболизме в составе белков; сульфаты и сероводород в желудочно-кишечном тракте. Галогены: роль хлорид-ионов в создании внутренней среды организма, создании буферной системы крови, регуляции водно-солевого обмена, в пищеварении.	2	6	6
Тема 3.Биометаллыз-элементы и d- элементы.Биологическая роль их ионов. Натрий, калий, кальций, магний, медь, цинк, марганец, железо, кобальт, молибден. Особенности электронного строения и способность к комплексообразованию. Распределение ионов во внутри - и внеклеточном пространстве.Значение в создании электролитной среды организма, передаче нервного импульса, работе ферментных систем.	3	4	4
Тема 4. Биолиганды - неорганические вещества, аминокислоты, пептиды, белки, Общая характеристика основных типов биолигандов. Неорганические галогенид-ионы (F ⁻ , C1 ⁻ , I ⁻), сульфат - и	2	-	-

нитрат-ионы, а также гидроксил-, фосфат - и карбонат-ионы, их вклад в энергетическую «копилку» живого организма. Нейтральные молекулы H ₂ O, O ₂ , CO ₂ , NH ₃ , их значение для метаболизма, питания и жизни организма в целом. Аминокислоты, пептиды, белки как биополимеры. Строение молекул, донорные группировки (карбоксильные и аминогруппы). Роль ациклических и циклических форм углеводородов в комплексообразовании. Донорные центры молекул: карбонильная и гидроксильная группировки. Строение нуклеиновых кислоти нуклеиновых оснований. Донорные центры для связывания с металлами для азотистых оснований (атомы азота и кислорода), нуклеозидов (гидроксогруппы) и нуклеотидов (фосфатные группы). Липиды: их классификация, состав и способность к комплексообразованию. Донорные центры стероидов: (карбонильная, карбоксильная и гидроксо- группы). Фосфолипиды и гликолипиды как полидентатныелиганды: состав, строение, донорные группировки (гидроксо-, амино-, фосфатная группы).			
Тема 5. Образование устойчивых металлокомплексов с	2	2	2
биолигандами.	2	2	2
Основные представления о химической связи в			
координационных соединениях биометаллов и биолигандов.			
Роль электростатический сил, ковалентных и донорно-			
акцепторных взаимодействий. Комплексы аминокислот и			
пептидов с биометаллами. Участие различных групп и			
донорных атомов аминокислот и пептидов в			
комплексообразовании с биометаллами. Роль концевых NH-			
групп, СООН-групп, а такжепептидных групп в связывании			
ионов металлов. Взаимодействие нуклеиновых кислот с			
ионами металлов (основные закономерности). Взаимодействие			
белков с ионами металлов (основные закономерности).			
Хелатный эффект в комплексообразовании. Его роль в			
устойчивости комплексов. Макроциклический эффект.			
Взаимная избирательность и сродство биометаллов и			
лигандов. Принцип ЖМКО.	2		
Тема 6. Биологическая роль биокомплексов железа. Гемовые и негемовые белки. Миоглобин, Гемоглобин,	2	_	-
ферритин, ферредоксин. Их строение и физиологичекая роль			
Тема 7.Биологическая роль биокомплексов меди	2	2	2
Церуллоплазмин, гемоцианин.		_	<u> </u>
Супероксиддисмутаза – фермент на основе			
комплесообразователей катионов меди и цинка.			
Строение, физиологичесская роль этих ферментов.			
Тема 8. Лекарственные средства на основе биоактивных	1	2	2
координационных соединений.			
Создание и использование металлокомплексов меди. Цинка,			
ртути, свинца, железа, хрома, лития, серебра с			
сульфаниламидами, порфиринами, тиосемикарбазонами и др.			ļ
для лечения гипертензии, неврологических заболеваний,			ļ

микробных инфекций.			
Металлокомплексы на основе металлов платиновой группы –			
противоопухолевые препараты.			
<i>Тема 9</i> . Неорганические биоматериалы.	1		
Биоминерализация в живом организме. Создание			
имитационных систем на основе пресыщенных растворов соли			
с трехмерной сеткой-матрицей из супрамолекулярных			
структур.			
Использование искусственных материалов для остеосинтеза			
(лечения переломов, травм, врожденных патологий кости и			
др.).			
Итого	16	16	16

ПРАКТИЧЕСКАЯ ПОДГОТОВКА

Тема	Задание на практическую	Количество
	подготовку	часов
Тема 2. Биологическая роль неметаллов.	1. Лабораторная работа Определение содержания фтора в почечных камнях потенциометрическим микрометодом. 2. Лабораторная работа "Определение нитрат-ионов в биологических объектах" 3. Лабораторная работа "Определение содержания хлоридиона в биологических объектах".	6
Тема 3.Биометаллы s-элементы и d-элементы. Биологическая роль их ионов.	1. Лабораторные работы Определение содержания натрия и калия в биологических жидкостях методом пламенной фотометрии. 2. Определение содержания железа в биологических жидкостях спектрофотометрическим методом.	4
Тема 5.Образование устойчивых металлокомплексов с биолигандами.	Лабораторная работа "Образование металлокомплексов с биолигандами. Теория жестких и мягких кислот и оснований	2
Тема 7.Биологическая роль биокомплексов меди	Лабораторная работа "Синтез и изучение свойств комплексных соединений меди (II)".	2
Тема 8. Лекарственные средства на основе биоактивных координационных соединений.	Лабораторная работа "Применение металлокомплексов с биолигандами в медицине.	2

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Темы для самостоятельн ого изучения	Изучаемые вопросы	Коли честв о часов	Формы самостоятель ной работы	Методическо е обеспечение	Формы отчетност и
Предмет и области исследования бионеорганичес кой химии.	Основные понятия бионеорганической химии. Классификация элементов по их массовым долям в организме. Синергизм и антагонизм действия	2	Работа с литературой и интернет ресурсами	Основная и дополнительн ая литература и интернетресурсы	Доклады
Биологическая роль неметаллов.	Особенности электронного строения атомов неметаллов. Биологическая роль их неорганических соединений.	4	Работа с литературой и интернет ресурсами	Основная и дополнительн ая литература и интернетресурсы	Доклады
Биометаллыз- элементы и d- элементы. Биологическая роль их ионов.	Особенности электронного строения атомов s-и d-биометаллов. Способность к комплексообразова нию с неорганическимил игандами.	4	Работа с литературой и интернет ресурсами	Основная и дополнительн ая литература и интернетресурсы	Доклады
Биолиганды - неорганические вещества, аминокислоты, пептиды, белки,	Состав, структура и свойства аминокислот, пептидов и белков.	4	Работа с литературой и интернет ресурсами	Основная и дополнительн ая литература и интернетресурсы	Доклады
.Биолиганды - углеводы, нуклеиновые кислоты, липиды.	Состав, ациклические и циклические структуры углеводов. Состав и свойства нуклеиновых кислот и липидов. Донорные группировки	4	Работа с литературой и интернет ресурсами	Основная и дополнительн ая литература и интернетресурсы	Доклады

	молекул.				
Образование устойчивыхмет аллокомплексов с биолигандами.	Основные понятия координационной химии. Теории химической связи в комплексах: теория валентных связей и теория кристаллического поля.	4	Работа с литературой и интернет ресурсами	Основная и дополнительна я литература и интернет- ресурсы	Тест
Кислородсодер жащиеметаллоп ротеиды на примере гемоглобина	Структура порфиринов. Гемовые и негемовые формы железа в организме. Структура молекулы гемоглобина.	4	Работа с литературой и интернет ресурсами	Основная и дополнительн ая литература и интернетресурсы	Тест
Лекарственные средства на основе биоактивных координационн ых соединений.	Металлокомплекс ы, лежащие в основе лекарств, применяемых для лечения гипертензии, онкологических заболеваний.	4	Работа с литературой и интернет ресурсами	Основная и дополнительн ая литература и интернетресурсы	Реферат
Неорганические биоматериалы.	Использование искусственных материалов для остеосинтеза и моделирования тканей человека	2	Работа с литературой и интернет ресурсами	Основная и дополнительн ая литература и интернетресурсы	Реферат
Итого		32			

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Формируемые компетенции:

Код и наименование компетенции	Этапы формирования компетенций
ДПК – 1. Способен проводить научно- исследовательские лабораторные работы и экспертизу биологического материала	 Работа на учебных занятиях Самостоятельная работа

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оценивае мые компетен ции	Уровень сформиров анности	Этап формирования	Описание показателей	Критерии оценивания	Шкала оценивания
ДПК - 1	Пороговый	1. Работа на лекциях и защита лабораторны х работ 2. Доклад на занятиях 3. Выполнение заданий для самостоятель ного изучения	Знать основы бионеорганическ ой химии как комплексной науки; биологическую роль неметаллов и металлов, входящих в органические соединения,стру ктуру и свойства биолигандов,; уметь применять физико-химическиемето ды для исследования металлокомплек сов с биолигандами; соблюдать правила эксплуатации лабораторного оборудования	Опрос, тестирование, доклад, презентация, выполнение лабораторных работ в форме практической подготовки	Шкала оценивания опроса Шкала оценивания тестирован ия, Шкала оценивания доклада Шкала оценивания ыполнения лабораторн ой работы в форме практическ ой подготовки Шкала оценивания презентаци и
	Продвинут ый		Знать механизмы образования и структуру металлокомплек сов с биолигандами; функции металлокомплек сов с биолигандами уметь	Опрос, тестирование, доклад, презентация, выполнение лабораторных работ в форме практической подготовки	Шкала оценивания опроса Шкала оценивания тестирован ия, Шкала оцени -вания

		Планировать и реализовывать физико-химическое исследование комплексов биогенных элементов; Владеть навыками планирования, проведения, анализа и интерпретации результатов научного эксперимента	доклада Шкала оценивания ыполнения лабораторн ой работы в форме практическ ой подготовки Шкала оценивания резентации
--	--	---	--

Шкала оценивания опроса

Показатель	Балл
Ответ полный и содержательный, соответствует теме; студент умеет	2
аргументировано отстаивать свою точку зрения, демонстрирует знание	
терминологии дисциплины	
Ответ в целом соответствует теме (не отражены некоторые аспекты);	1
студент умеет отстаивать свою точку (хотя аргументация не всегда на	
должном уровне); демонстрирует удовлетворительное знание терминологии	
дисциплины	
Ответ неполный как по объему, так и по содержанию (хотя и соответствует	0
теме); аргументация не на соответствующем уровне, некоторые проблемы с	
употреблением терминологии дисциплины	

Максимальное количество баллов – 6 (по 2 балла за каждый опрос).

Шкала оценивания выполнения лабораторной работы в форме практической подготовки

Критерии оценивания	Баллы
Работа выполнена полностью по плану и сделаны правильные выводы;	4
Работа выполнена правильно не менее чем на половину или допущена существенная ошибка	2
Работа не выполнена	0

Максимальное количество баллов – 32 (по 4 балла за работу).

Шкала оценивания доклада

Показатель	Балл
------------	------

Доклад соответствует заявленной теме, выполнен с привлечением	5
достаточного количества научных и практических источников по теме,	
студент в состоянии ответить на вопросы по теме доклада.	
Доклад в целом соответствует заявленной теме, выполнен с привлечением	3
нескольких научных и практических источников по теме, студент в	
состоянии ответить на часть вопросов по теме доклада.	
Доклад не совсем соответствует заявленной теме, выполнен с	1
использованием только 1 или 2 источников, студент допускает ошибки при	
изложении материала, не в состоянии ответить на вопросы по теме доклада.	

Шкала оценивания презентации

Показатель	
Представляемая информация систематизирована, последовательна	
и логически связана. Проблема раскрыта полностью. Широко использованы возможности технологии <i>PowerPoint</i> .	
Представляемая информация в целом систематизирована, последовательна и	
логически связана (возможны небольшие отклонения). Проблема раскрыта.	
Возможны незначительные ошибки при оформлении в PowerPoint (не более	
двух).	
Представляемая информация не систематизирована и/или не совсем	1
последовательна. Проблема раскрыта не полностью. Выводы не сделаны или	
не обоснованы. Возможности технологии PowerPoint использованы лишь	
частично.	

Шкала оценивания реферата

Показатель	Балл
Содержание соответствуют поставленным цели и задачам, изложение	6
материала отличается логичностью и смысловой завершенностью,	
студент показал владение материалом, умение четко, аргументировано	
и корректно отвечать на поставленные вопросы, отстаивать	
собственную точку зрения.	
Содержание недостаточно полно соответствует поставленным цели и	3
задачам исследования, работа выполнена на недостаточно широкой	
источниковой базе и не учитывает новейшие достижения, изложение	
материала носит преимущественно описательный характер, студент	
показал достаточно уверенное владение материалом, однако	
недостаточное умение четко, аргументировано и корректно отвечать на	
поставленные вопросы и отстаивать собственную точку зрения.	
Содержание не отражает особенности проблематики избранной темы, -	1
содержание работы не полностью соответствует поставленным задачам,	
источниковая база является фрагментарной и не позволяет качественно	
решить все поставленные в работе задачи, работа не учитывает	
новейшие достижения историографии темы, студент показал	
неуверенное владение материалом, неумение отстаивать собственную	
позицию и отвечать на вопросы	

Работа не имеет логичной структуры, содержание работы в основном	0
не соответствует теме, источниковая база исследования является	
недостаточной для решения поставленных задач, студент показал	
неуверенное владение материалом, неумение формулировать	
собственную позицию.	

Шкала оценивания тестовой работы

максимальное количество баллов - 15

- 0-20 % правильных ответов оценивается как «неудовлетворительно» (3-балла);
- 21-40% 6 баллов;
- 41-60% 9 баллов
- 61-80% 12 баллов;
 - 81-100% 15 баллов.
- 5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы.

Примерная тематика лабораторных работ в форме практической подготовки

- 1. Определение содержания натрия и калия в биологических жидкостях методом пламенной фотометрии.
- 2. Определение содержания фтора в почечных камнях потенциометрическим микрометодом.
- 3. Лабораторная работа "Определение содержания хлорид-иона в биологических объектах
- 4. Лабораторная работа "Определение нитрат-ионов в биологических объектах"
- 5. Определение содержания железа в биологических жидкостях спектрофотометрическим методом.
- 6. Определение константы нестойкости комплексов меди кондуктометрическим методом.
- 7. Образование металлокомплексов с биолигандами. Теория жестких и мягких кислот и оснований.
- 8. Применение металлокомплексов с биолигандами в медицине.

Примерные вопросы для текущего контроля(опрос)

- 1. По содержанию в организме человека углерод и кремний являются с
- 2. Что является основным минеральным компонентом костной и зубной тканей
- 3. Концентрация ионов калия большевнутри или вне клетки?
- 4. При лечении каких заболеваний используются калия йодид и натрия?
- 5. К какой группе элементов по содержанию в организме человека относится кислород?
- 6. Напишите молекулярную формулу буры и ее химическое название. Укажите на чем основано ее применение в медицинской практике. Составьте ионное и молекулярное уравнение ее гидролиза. Укажите рН раствора.
- 7. Химические основы токсического действия ионов Pb (II) с позиций теории Пирсона (ЖМКО) и меры детоксикации.
- 8. Составьте ионное и молекулярное уравнение гидролиза гидрокарбоната натрия. Укажите рН раствора. Как, сместить равновесие гидролиза в сторону образования исходных веществ? Какую роль играют гидрокарбонат-ионы в поддержании постоянства рН крови?

- 9. Какая равновесная система образуется при растворении аммиака в воде? Как доказать его наличие в растворе? Напишите уравнение реакции и укажите ее аналитический эффект. С какой целью применяется 10% раствор аммиака в медицинской практике?
- 10. Составьте молекулярное уравнение гидролиза нитрата висмута (III). Как используя принцип Ле Шателье, можно сместить равновесие в сторону образования исходных веществ?
- 11. Какой препарат висмута (III) применяется в медицинской практике? Запишите его название на латинском и русском языках.
- 12.. Укажите характер среды в растворе гидрофосфата натрия. Ответ обоснуйте. Приведите необходимые уравнения реакций. В состав какой буферной системы крови входит гидрофосфат-ион? Укажите ее роль в организме человека.
- 13.. Укажите характер среды в растворе дигидрофосфата калия. Ответ обоснуйте. Какую буферную систему образуют гидро- и дигидрофосфаты и ее роль в организме человека.
- 14. В чем состоит химизм антацидного действия гидроксида алюминия?
- 15. Чем объясняется токсическое действие на организм угарного газа?

Примеры тестовых заданий

- 1. Лучшими комплексообразователями являются
 - 1) S-элементы
 - 2) D-элементы
 - 3) Р-элементы
 - 4) Г-элементы
- 2. Между внешней и внутренней сферами комплексных соединений образуется химическая связь
 - 1) Ковалентная
 - 2) Водородная
 - 3) Ионная
 - 4) Металлическая
- 3. Хелаты-это
 - 1) Циклические внутрикомплексные соединения металлов с полидентатнымилигандами
 - 2) Многоядерные комплексы металлов с монодентатнымилигандами
 - 3) Нейтральные комплексы с лигандами-молекулами СО
 - 4) Катионные комплексы металлов с монодентатнымилигандами.
- 4. У молекул аминокислот при комплексообразовании донорными группировками являются
 - 1) -COOH, PO₄³-
 - 2) -NH₂⁺, -COOH
 - 3) PO₄³-,- NH₂+, 4) -NH₂+, OH
- 5. В молекулах фосфолипидов при комплексообразовании донорными группировками не являются
 - 1) Амино-группа
 - 2) Гидроксо-группа
 - 3) Фосфатная группа
 - 4) Углеводородная цепочка
- 6. Согласно теории Льюиса жесткими кислотами являются частицы
 - 1) малого размера, акцепторы электронной пары
 - 2) с высокой электроотрицательностью, доноры электронной пары
 - 3) Большого размера с малым положительным зарядом
 - 4) Большого размера, доноры электронной пары.
- 7. Мягкие кислоты перечислены в ряду

1) H ⁺ , Na ⁺ , Li ⁺ 2) Ag ⁺ , Cu ⁺ , Pb ²⁺	
3) OH ⁻ , F ⁻ , Cl ⁻	
4) Γ, C ₆ H ₆ , C ₂ H ₄	П
8. С увеличением степени окисления атома в	металла жесткость кислоты Льюиса
1) Pactet	
2) Уменьшается3) Не меняется	
4) Сначала растет, затем уменьшается	
9. Серусодержащие аминокислоты преимущ	ACTRAINIO COATINIGIOTOS
1) С жесткими кислотами	сетьенно соединяются
2) С жесткими основаниями	
3) С мягкими кислотами	
4) С мягкими основаниями	
10. Факторами, определяющими устойчивое и	комплексообразование металлов с
биолигандами являются	······································
1) Наличие донорной группировки лиган	ла
2) Нужная конформация молекулы лиган	
3) Хелатный эффект	
4) Все перечисленные факторы.	
11. Миоглобин (2 ответа)	
а) включает в себя небелковую часть - гел	и и белковую - апомиоглобин,
	+2
	в) в его состав входит Fe^{+2}
г) в его состав входит Fe^{+3}	д) не способен связывать кислород.
12. Верны ли следующие суждения:	r. +2
1) В состав цитохромов как центральный а	атом входит только Ре
2) процессы в дыхательной цепи, катализи	INVENTIE HATOVNOMORCHIJAJAMA -
, 1	прустые цитохротоксидазати
окислительно-восстановительные.	
а) верны оба в) верно только 2	
б) верно только 1 г) неверны оба.	
13. Закончите уравнения возможных реакций, ук	ажите мягкие и жесткие кислоты и
основания по Льюису:	\
a) $[Cu(NH_3)_4] Cl_2 + K OH =$	B) $[Ag(NH_3)_2]NO_3 + Na = \Gamma$ Γ) $K_3[Fe(CNS)_6]^{3-} + H_2O$
б) $K_2[HgI_4]^{2-} + H_2O$	$\Gamma) K_3[Fe(CNS)_6]^3 + H_2O$
14. Гемоцианин - это	
14. 1 Смоцианин - 910	
а) гемовый белок с центральным атом	ом железа
в) негемовый белок с центральным ат	
б) негемовый белок с центральным ато	
г) негемовый белок с центральным ато	
15. Установите соответствие между железосодер	
	-
	в оквосст. цепи за счет окисления атома
железа	+
2) трансферин б) депонирование Fe^3	в клетке
2) my5av = 1 2+	DVV /
3) кубан в) перенос Fe ²⁺ в кле ²	тку
15	

- 4) пероксидаза г) катализ реакции окисления

16. Только мягкие кислоты Льюиса расположены в ряду а)
$$Cu^+$$
, Ag^+ , Cd^{2+} , Hg^+ в) Mg^{2+} , Ca^{2+} , Fe^{2+} , Co^{2+} ,

- б) H⁺, Li⁺, Na⁺, K⁺, г) F⁻, Cl⁻, ОН⁻, H₂O.
- 17.. Для карбоангидразы НЕ верно, что
 - а) центральным атомом этого комплекса является цинк
 - б) она катализирует процесс гидратации углекислого газа
 - в) процесс начинается с депротонирования комплекса
 - г) координационное число цинка в этом комплексе равно 6.
- 18. Из характеристик лекарственного препарата цисплантина не верно, что
 - а) это комплекс платины с координационным числом 4
 - б) является противоопухолевым препаратом для химиотерапии
 - в) 63% его связываются с гуанином в ДНК клетки, что вызывает складывание и поворот молекулы на 45° ,
 - г) 63% препарата оказывают побочные действия на организм.

Примерные темы докладов

- 1. Классификация элементов по их массовым долям в организме.
- 2. Биологическая роль неорганических соединений неметаллов.
- 3. Особенности электронного строения атомов s- и d-биометаллов.
- 4. Состав, структура и свойства аминокислот, пептидов и белков
- 5. Состав и свойства нуклеиновых кислот и липидов.
- 6. Классификация углеводов. Строение и свойства полисахаридов. Роль ациклических и циклических форм в комплексообразовании.
- 7. Кислород и его роль в дыхательном цикле живых организмов. Биологическая роль озона.
- 8. Углерод, значение его неорганических соединений для человека.
- 9 Сера и ее роль в метаболизме в составе белков; сульфаты и сероводород в желудочнокишечном тракте.
 - 11. Галогены: роль хлорид-ионов в создании внутренней среды организма.

Примерные темы презентаций

- 1. Классификация элементов по их массовым долям в организме.
- 2. Биологическая роль неорганических соединений неметаллов.
- 3. Особенности электронного строения атомов s- и d-биометаллов.
- 4. Состав, структура и свойства аминокислот, пептидов и белков
- 5. Состав и свойства нуклеиновых кислот и липидов.
- 6. Классификация углеводов. Строение и свойства полисахаридов. Роль ациклических и циклических форм в комплексообразовании.
- 7. Кислород и его роль в дыхательном цикле живых организмов. Биологическая роль озона.
- 8. Углерод, значение его неорганических соединений для человека.
- 9 Сера и ее роль в метаболизме в составе белков; сульфаты и сероводород в желудочнокишечном тракте.
- 10. Галогены: роль хлорид-ионов в создании внутренней среды организма.

Примерные темы рефератов:

- 1. Биологическая роль натрия, калия и лития.
- 2. Биологическая роль элементов триады железа.
- 3. Биологическая роль меди, серебра и золота.
- 4. Структуры молекулы белка. Белки как биолиганды.
- 5. Строение молекулы гемоглобина. Дезоксигемоглобин, метгемоглобин, оксигемоглобин.
- 6. Особенности строения нуклеиновых кислот. Нуклеиновые кислоты как биолиганды.
- 7. Ферменты как комплексы биометаллов с биолгиандами (на примерах карбоксиангидразы и карбоксипептидазы).
- 8. Лекарственные формы на основе комплексов меди, серебра и золота как бактерицидные средства. Их физиологичекое действие.
- 9. Препараты на основе соединений магния, кальция и алюминия антацидные средства.
- 10. Применение комплексов европия во флуоресцентномиммуноаналазе.
- 11. Препараты на основе комплксов железа, используемые для лечения патологий кровеносной системы
- 12. Комплексы платины, лежащие в основе препаратов для лечения онкологических заболеваний.
- 13. Биоминерализация и ее роль для создания неорганических полимерных композитов, имитирующих свойства биологических тканей.
- 14. Физиологическое воздействие фтора на организм человека.
- 15. Строение молекулы хлорофилла. Его роль в энергетическом обеспечении окислительно-восстановительных процессов при фотосинтезе.

Примерные вопросы к зачету

- 1.Место бионеорганической химии среди традиционных химических дисциплин и основные направления ее развития.
- 2.Объект исследования в бионеорганической, элементорганической, органической и неорганической химии.
- 3. Характеристика свойстватом овбиометаллов.
- 4.Основные понятия и категории координационной химии в применении к характеристике комплексных соединений биометаллов с биолигандами.
- 5. Геометрия различных комплексов биометаллов в связи с наиболее распространенными координационными числами последних. 6. Биологические функции ионов непереходных биометаллов в связи с их химией, типами и конфигурацией связей в комплексах invitro.
- 7. Биологические функции ионов переходных биометаллов в связи с их химией, типами и конфигурацией связей в комплексах invitro. 8. Классификация реальных кислот и оснований по их электронно-химическим характеристикам.
- 9. Применимость концепции жестких и мягких кислот и оснований к объяснению избирательности и специфичности металлолигандного взаимодействия.
- 10. Химические связи в координационных соединениях биометаллов и биолигандов.
- 11. Комплексы аминокислот и пептидов с биометаллами.
- 12. Основные закономерности взаимодействия нуклеиновых кислот с ионами металлов.
- 13.Взаимодействие белков с ионами металлов. Хелатный эффект. Макроциклический эффект.
- 14. Кинетика комплексообразования металл-биолиганд. «Общая» и «ступенчатая» константы устойчивости.
- 15. Функции, выполняемые ионом металла в ферментативном катализе. Критерий истинности металлоферментов.
- 16.Влияние белкового лиганда на координацию молекул кислорода в гемоглобине и

миоглобине.

- 17. Гемоцианин, Гемэритрин. Структуры центров связывания кислорода.
- 18. Роль цинка в каталитической функции карбоксипептидазы А. 19. Карбоангидраза. Характеристика области активного центра. Функция металла.
- 20. Роль молибдена в биологических системах.
- 21. Основные направления применения комплексов металлов с биолигандами

5.4.Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Освоение дисциплины предусматривает опрос, доклад, презентацию, реферат, тестирование, выполнение лабораторных занятий в форме задания по практической подготовке.

Максимальное количество баллов по дисциплине - 100 баллов.

Максимальное количество баллов, которое может набрать студент в течение семестра за различные виды работ –80 баллов.

Промежуточная аттестация проводится в форме зачета.

Максимальная сумма баллов, которые студент может получить на зачете – 20 баллов.

Требования к зачету

Зачет проводится по вопросам. На зачете студенты должны давать развернутые ответы на вопросы, приводя достаточное количество примеров.

Шкала оценивания зачета

Критерий оценивания	Баллы
Полно раскрыто содержание материала в объеме программы; четко и правильно даны определения и раскрыто содержание понятий; верно использованы научные термины; для доказательства использованы различные умения, выводы из наблюдений и опытов; ответ самостоятельный, использованы ранее приобретенные знания.	16-20
Раскрыто основное содержание материала; в основном правильно даны определения понятий и использованы научные термины; определения понятий неполные, допущены незначительные нарушения последовательности изложения, небольшие неточности при использовании научных терминов или в выводах и обобщениях из наблюдений и опытов.	11-15
Усвоено основное содержание учебного материала, но изложено фрагментарно, не всегда последовательно; определения понятий недостаточно четкие; не использованы в качестве доказательства выводы и обобщения из наблюдений и опытов или допущены ошибки при их изложении; допущены ошибки и неточности в использовании научной терминологии, определении понятий.	6-10

Основное содержание вопроса не раскрыто; не даны ответы	0-5
на вспомогательные вопросы; допущены грубые ошибки в	
определении понятий, при использовании терминологии.	

Итоговая шкала выставления оценки по дисциплине

Итоговая оценка по дисциплине выставляется по приведенной ниже шкале. При выставлении итоговой оценки преподавателем учитывается работа студента в течение всего срока освоения дисциплины, а также баллы, полученные на промежуточной аттестации.

Баллы, полученные обучающимся в	Оценка по дисциплине
течение освоения дисциплины	
81-100	зачтено
61-80	зачтено
41-60	зачтено
0-40	Не зачтено

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1.Основная литература

1. Егоров, В.В.

Бионеорганическая химия [Текст] :учеб.пособие / В. В. Егоров. - 2-е изд.,доп. - СПб. : Лань, 2017. - 412с. - 1190-20 (4).

6.2. Дополнительная литература

- 1. Добрынина Н.А. «Бионеорганическая химия». Методическое пособие для студентов. М.: МГУ, 2007, 32 с.
- 2. Ленский А.А., Белавин И.Ю., Быликин С.Ю. «Биофизическая и бионеорганическая химия». М.: Медицинское информационное агентство, 2008, 408 с.
- 3. Логинова М.В. «Бионеорганическая химия: металлокомплексы в медицине». Учебное пособие. Мн.: БГУ, 2000
- 4. Слесарев В.И. Химия. Основы химии живого. Учебник для вузов. 4-е издание. СПб: Химиздат, 2007, 784 с.

6.3. Ресурсы информационно-телекоммуникационной сети «Интернет»

1. http://www/Cemport.ru

2..http://www.iprbookshop.ru/searchresults.html

http://www.rushim.ru

http://www. Alhimik.ru

http://www.for-stvdents.ru/details/neorganicheskaya-hiiTiiya-v-3-h-tomah.html

http://www.for-stydents.ru/details/kurs-obschey-himii.html

http://www.iprbookshop.ru/analiticheskaya-ximiya-i-fiziko-ximicheskie-metodyi-analiza-uchebnoe-posobie.html

Электронно-библиотечные системы (ЭБС ГУП)

- электронные учебно-методические комплексы библиотеки ГУП;
- · http://www.ebiblioteka.ru ЭБС «ИВИС». Pecypcы East View Publication;
- · http://znanium.com ЭБС ZNANIUM.COM;
- · http://www.biblioclub.ru электронно-библиотечная систем (ЭБС): Университетская библиотека он лайн (Директ-Медиа);
- · http://www.gnpbu.ru/ «Научная педагогическая библиотека им. К.Д. Ушинского Российской академии образования».
- · http://elibrary.ru «Научная электронная библиотека eLIBRARY.RU»

7.МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

1. Методические рекомендации по организации самостоятельной работы обучающихся

8.ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

MicrosoftWindows

MicrosoftOffice

KasperskyEndpointSecurity

Информационные справочные системы:

Система ГАРАНТ

Система «КонсультантПлюс»

Профессиональные базы данных:

<u>fgosvo.ru – Портал Федеральных государственных образовательных стандартов высшего</u> образования

pravo.gov.ru - Официальный интернет-портал правовой информации

www.edu.ru – Федеральный портал Российское образование

Свободно распространяемое программное обеспечение, в том числе отечественного производства

ОМС Плеер (для воспроизведения Электронных Учебных Модулей)

7-zip

Google Chrome

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЛИСПИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения занятий лекционного и семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные учебной мебелью, доской, демонстрационным оборудованием;
- помещения для самостоятельной работы, укомплектованные учебной мебелью, персональными компьютерами с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду;
- лаборатория, оснащенная оборудованием: персональными компьютерами с подключением к сети Интернет, наборами демонстрационного оборудования и учебнонаглядными пособиями.