Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Дата подписания: 24.10.2024 14:21:41 Уникальный программный ключ:

6b5279da4e034bff679172803da5b7b559fc69e2

МИНИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ

Государственное образовательное учреждение высшего образования Московской области МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ (МГОУ)

Физико-математический факультет Кафедра вычислительной математики и методики преподавания информатики

Согласовано управлением организации и контроля качества образовательной

деятельности

« 10 » 06 Начальник управления

/М.А. Миненкова/

Одобрено учебно-методическим советом

Протокол « Дэ» - В В

Председатель

Рабочая программа дисциплины

Теория алгоритмов

Направление подготовки 44.03.01 Педагогическое образование

> Профиль: Математика

Квалификация

Бакалавр

Формы обучения Очная

Согласовано учебно-методической комиссией физико-математического факультета:

Протокол «<u>№</u> » <u>~</u> 2020 г. № <u></u> 10 mor

Председатель УМКом

/ Барабанова Н.Н./

Рекомендовано кафедрой вычислительной математики и методики преподавания информатики

Протокол «до » осе 2020 г.№ 20

Зав. кафедрой

/ Шевчук М. В. /

Мытищи 2020

Автор-составитель:

Борисова Наталья Вячеславовна, кандидат педагогических наук, доцент, доцент кафедры вычислительной математики и методики преподавания информатики

Рабочая программа дисциплины «Теория алгоритмов» составлена в соответствии с требованиями Федерального Государственного образовательного стандарта высшего образования по направлению подготовки 44.03.01 Педагогическое образование профиль «Математика», утвержденного приказом МИНОБРНАУКИ РОССИИ от 22.02.18г. № 121.

Дисциплина входит в базовую часть блока Б1 «Дисциплины (модули)» и является обязательной для изучения.

Год начала подготовки 2020

СОДЕРЖАНИЕ

1. Планируемые результаты обучения	4
2. Место дисциплины в структуре образовательной программы	5
3. Объем и содержание дисциплины	5
4. Учебно-методическое обеспечение самостоятельной работы обучающихся	7
5. Фонд оценочных средств для проведения текущей и промежуточной аттестации по дисциплине	8
6. Учебно-методическое и ресурсное обеспечение дисциплины	18
7. Методические указания по освоению дисциплины	21
8. Информационные технологии для осуществления образовательного процесса по дисциплине	22
9. Материально-техническое обеспечение дисциплины	23

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цель и задачи дисциплины

Целью освоения дисциплины является формирование систематизированных знаний в области алгоритмизации процессов, и роли алгоритмизации в их решении; развитие алгоритмического мышления.

Задачи дисциплины:

- формирование представлений о роли, которую играет теория алгоритмов в современной математике и информатике;
- формирование у обучающихся логического и алгоритмического мышления, математической культуры.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

ОПК-8 - Способен осуществлять педагогическую деятельность на основе специальных научных знаний.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Теория алгоритмов» входит в Блок 1. Обязательная часть. Дисциплины физико-математического цикла.

Для освоения дисциплины «Теория алгоритмов» обучающиеся используют знания, умения, навыки, полученные и сформированные в ходе изучения дисциплин «Высшая математика», «Линейная алгебра», «Аналитическая геометрия», «Программное обеспечение ЭВМ».

Дисциплина изучается в 6 семестре.

Изучение дисциплины «Теория алгоритмов» является базой для изучения дисциплины «Языки и методы программирования», «Методика углубленного обучения информатике», прохождения практики и дальнейшей профессиональной деятельности будущего выпускника.

Компетенции, знания, навыки и умения, полученные в ходе изучения дисциплины, должны всесторонне использоваться и развиваться обучающимися:

- на всех этапах обучения в вузе при изучении дисциплин информационного цикла, проведении научных исследований, выполнении домашних заданий, подготовке курсовых и выпускных квалификационных работ;
 - в ходе дальнейшего обучения в магистратуре;
- в процессе последующей профессиональной деятельности при использовании языков программирования, алгоритмов, для решения задач математического и информационного обеспечения.

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Показатель объема дисциплины	Форма обучения				
	Очная	Заочная	Очно-заочная		
Объем дисциплины в зачетных единицах		2			
Объем дисциплины в часах	72				
Контактная работа:	36.2				
Лекции	18				
Практические занятия	18				
Контактные часы на промежуточную аттестацию:	0,2				
Зачет/ зачет с оценкой	0.2				
Самостоятельная работа	28				
Контроль	7.8				

Формой промежуточной аттестации является зачет в 6 семестре.

3.2. Содержание дисциплины

	К		честв сов	80
Наименование разделов (тем) дисциплины с кратким содержанием	Лекции	Семинарские занятия	Практические занятия	Лабораторные занятия
1.	2.	3.	4.	5.
Тема 1. Начальные понятия теории алгоритмов Неформальное понятие алгоритма. Свойства алгоритма. Примеры алгоритмов. Алгоритмы в математике. Алгоритм Евклида. Алгоритмический процесс. Вычислимые функции. Примеры.	4		4	
Тема 2. Машины Тьюринга и вычислимые по Тьюрингу функции Определение машины Тьюринга. Построение алгоритмов для машины Тьюринга. Понятие композиции машин Тьюринга. Вычислимые по Тьюрингу функции. Алгоритмы, функции и машины Тьюринга. Вычислимость функций на машине Тьюринга. Тезис Тьюринга (основная гипотеза теории алгоритмов). Машины Тьюринга и современные ЭВМ.	4		4	
Тема 3. Рекурсивные функции Понятие рекурсивных функций. Простейшие функции. Тезис Черча (основная гипотеза теории рекурсивных функций). Вычислимость по Тьюрингу частично рекурсивных функций.	4		4	

Тема 4. Нормальные алгоритмы Маркова Марковские подстановки. Нормальные алгоритмы и их применение к словам. Нормально вычислимые функции. Совпадение класса всех нормально вычислимых функций с классом всех функций, вычислимых по Тьюрингу. Эквивалентность различных теорий алгоритмов.	4	4	
Тема 5. Алгоритмические проблемы Алгоритмическая проблема. Неразрешимые алгоритмические проблемы, связанные с машинами Тьюринга. Неразрешимые алгоритмические проблемы в общей теории алгоритмов, в математической логике и математике.	2	2	
Итого	18	18	

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Целью самостоятельной работы является углубление понимания и улучшение усвоения курса лекций и практических занятий, подготовка к выполнению контрольных работ, к сдаче зачетов и выполнению курсовой работы.

Специфика дисциплины «Теория алгоритмов» ориентирует обучающихся на активную самостоятельную работу:

- составление таблиц истинности для формул алгебры высказываний;
- применение понятия логического следствия для решения задач;
- осуществление равносильных преобразований;
- формулировку обратной, противоположной и обратной противоположной теоремы, использование закона контрапозиции для доказательства теорем;
 - выделение необходимых и достаточных условий;
 - применение логических операций к конкретным высказываниям.

Самостоятельную работу на практических занятиях можно организовать за счет выбора студентом индивидуального задания, самостоятельного решения поставленных задач, выполнения предлагаемых согласно варианту заданий, составления итогового отчета о проделанной работе. На лекциях - дискуссия, обсуждение мнений студентов.

Формы и методы самостоятельной работы обучающихся и её оформление:

- конспектирование изучаемой литературы - краткое изложение материала по математической логике из предложенных источников, а также из источников, которые обучающиеся находят самостоятельно согласно предложенной тематике, тематических веб-сайтов, электронных учебников и т.д.; конспект должен быть достаточно кратким и точным, обобщать основные положения авторов;

С целью оптимизации учебного процесса рекомендуется на первом занятии сообщить студентам общую тематику занятий, цели и задачи дисциплины, темы самостоятельной работы и примерный перечень вопросов к экзамену по дисциплине, а также обозначить особенности проведения экзамена. В процессе

изучения дисциплины необходимо постоянное использование возможностей глобальной сети Интернет с целью привлечения материалов профильных сайтов, а также изучения базовых возможностей программного обеспечения. Самостоятельной работой студент обязан заниматься перед каждым очередным занятием в форме выполнения домашней работы.

Темы для самостоятел ьного изучения 1.	Изучаемые вопросы 2.	Кол- во часо в	Формы самостоятел ьной работы	Методичес кое обеспечени е 5.	Формы отчетности 6.
Тема 1. Начальные понятия теории алгоритмов	Примеры алгоритмов. Алгоритмы в математике. Алгоритм Евклида. Алгоритмический процесс. Вычислимые функции.	8	Работа с литературой и сетью Интернет.	Рекоменду емая литература. Ресурсы Интернет.	Решение задач, контрольная работа, реферат/док лад
Тема 2. Машины Тьюринга и вычислимые по Тьюрингу функции Тема 3.	Построение алгоритмов для машины Тьюринга. Вычислимые по Тьюрингу функции. Алгоритмы, функции и машины Тьюринга. Вычислимость функций на машине Тьюринга. Понятие рекурсивных	6	Работа с литературой и сетью Интернет.	Рекоменду емая литература. Ресурсы Интернет.	Решение задач, контрольная работа, реферат/док лад
Рекурсивные функции	функций. Простейшие функции. Тезис Черча (основная гипотеза теории рекурсивных функций).		литературой и сетью Интернет.	емая литература. Ресурсы Интернет.	задач, контрольная работа, реферат/док лад
Тема 4. Нормальные алгоритмы Маркова	Марковские подстановки. Нормальные алгоритмы и их применение к словам. Нормально вычислимые функции. Эквивалентность различных теорий алгоритмов.	8	Работа с литературой и сетью Интернет.	Рекоменду емая литература. Ресурсы Интернет.	Решение задач, контрольная работа, реферат/док лад
Тема 5. Алгоритмич еские проблемы	Неразрешимые алгоритмические проблемы, связанные с машинами Тьюринга. Неразрешимые алгоритмические проблемы в общей теории алгоритмов, в математической логике и математике.	36	Работа с литературой и сетью Интернет.	Рекоменду емая литература. Ресурсы Интернет.	Решение задач, контрольная работа, реферат/док лад

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Изучение дисциплины «Теория алгоритмов» позволяет сформировать у бакалавров следующие компетенции.

Код и наименование компетенции	Этапы формирования
ОПК-8 «Способен осуществлять педагогическую деятельность на основе специальных научных знаний»	 Работа на учебных занятиях. Самостоятельная работа.

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оцени ваемые компет енции	Уровень сформиро -ванности	Этап формировани я	Описание показателей	Критерии оцениван ия	Шкал а оцени вания
ОПК-8	й	учебных занятиях. 2. Самостояте льная работа.	Знает: — методы критического анализа и оценки научных достижений и исследований в области физикоматематического образования; — методы критического анализа и оценки научных достижений и педагогических исследований; Умеет: — анализировать методы научных исследований в целях решения исследовательских и практических задач; применять методы математической статистики для исследований в профессиональной деятельности; — умеет обрабатывать данные и их интерпретировать	Реферат/д оклад, конспект урока, решение практичес ких заданий, контроль ная работа, зачет	41-60
	Продвину тый	1. Работа на учебных занятиях 2. Самостоятель ная работа	Знает: — экспериментальные и теоретические методы научно-исследовательской деятельности; — основные этапы планирования и реализации научного исследования в области физико-математического образования Умеет: — осуществлять подготовку информационных материалов по результатам исследовательских работ в предметной области; — представлять результаты иссле-	Реферат/д оклад, конспект урока, решение практичес ких заданий, контроль ная работа, зачет	61- 100

	довательских работ, выступать с сообщениями и докладами по тематике проводимых исследований Владеет (навыками и/или опытом деятельности): — опытом проведения исследований в профессиональной деятельности; — современными технологиями организации сбора, обработки данных; — основными принципами проведения научных исследований в об-	
	– основными принципами прове-	
	разования.	

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примеры типовых *Контрольных работ* для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения дисциплины

Контрольная работа 1 по теме 1 и теме 2 Неформальное понятие алгоритма. Алгоритмы в математике. Алгоритм Евклида. Алгоритмы, функции и машины Тьюринга.

Контрольная работа 2 по теме 3 и теме 4. Оператор суперпозиции. Оператор примитивной рекурсии. Нормально вычислимые функции. Принцип нормализации Маркова.

Контрольная работа 3 по теме 4 и теме 5. Разрешимые и перечислимые множества. Теорема Поста. Неразрешимые алгоритмические проблемы в логике и математике.

Примеры практических заданий:

- 1. Машина Тьюринга. На ленте машины Тьюринга содержится последовательность символов «1». Разработать программу для машины Тьюринга, которая каждый второй символ «1» должна заменить на «0». Замена начинается с правого конца последовательности. Автомат в состоянии q_1 обозревает один из символов указанной последовательности. Описать работу программы.
- 2. Машина Тьюринга. Разработать машину Тьюринга, которая увеличивала бы заданное число, записанное в восьмеричной системе счисления, не единицу.

Машина в состоянии q_1 обозревает произвольную цифру входного слова. Описать работу программы.

- 3. Машина Поста. На ленте задан массив меток. Увеличить длину массива на 2 метки. Каретка находится над одной из ячеек самого массива.
- 4. Машина Поста. Разработать машину Поста, которая из двух массивов меток, находящихся на некотором расстоянии, создавала бы один массив. Каретка находится над крайней левой меткой первого массива.
- 5. Алгоритм Маркова. Построить алгоритм Маркова, который позволил бы в слове над алфавитом $A = \{a, b, c, d\}$ произвел бы замену вхождения подслова bb на dd и удалил бы все вхождения символа c.
- 6. Алгоритм Маркова. Построить алгоритм Маркова, который в слово над $A = \{0,1,2,3\}$ (неотрицательное целое число в четверичная система счисления) переводил бы в двоичную систему счисления.
- 7. Вычислите сложность алгоритма поиска минимального и максимального значения в неупорядоченном массиве.
 - 8. Вычислите сложность алгоритма вычисления факториала числа.

Примерные темы рефератов/докладов

- 1. Машина Тьюринга. Неразрешимые проблемы
- 2. Сравнение МТ и НАМ
- 3. Рекурсивные алгоритмы
- 4. Рекурсия в программировании
- 5. Основы оценок сложности алгоритмов
- 6. Вычислительная сложность алгоритма
- 7. "Жадные" алгоритмы

Примерный список теоретических вопросов к зачету

- 1. Неформальное понятие алгоритма. Свойства алгоритма. Алгоритмы в жизни. Алгоритмы в математике. Алгоритм Евклида. Примеры алгоритмов.
- 2. Конструктивные объекты. Алгоритмический процесс. Вычислимые функции. Примеры. Сигнализирующее множество.
- 3. Определение машины Тьюринга. Применение машины Тьюринга к словам. Построение алгоритмов для машины Тьюринга.
- 4. Понятие композиции машин Тьюринга. Применение композиций машин Тьюринга для их конструирования.
 - 5. Вычислимые по Тьюрингу функции.
 - 6. Алгоритмы, функции и машины Тьюринга.
 - 7. Вычислимость функций на машине Тьюринга.
 - 8. Вычисление сложных функций на машинах Тьюринга.
 - 9. Тезис Тьюринга (основная гипотеза теории алгоритмов).
 - 10. Машины Тьюринга и современные ЭВМ.
 - 11. Происхождение рекурсивных функций. Простейшие функции.

- 12. Тезис Черча (основная гипотеза теории рекурсивных функций).
- 13. Вычислимость по Тьюрингу примитивно рекурсивных функций.
- 14. Частично рекурсивные функции и функции, вычислимые по Тьюрингу.
- 15. Марковские подстановки. Нормальные алгоритмы и их применение к словам. Нормально вычислимые функции. Принцип нормализации Маркова.
- 16. Совпадение класса всех нормально вычислимых функций с классом всех функций, вычислимых по Тьюрингу.
 - 17. Теорема Поста.
 - 18. Существование перечислимого, но не разрешимого множества.

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценивание степени освоения обучающимися дисциплины осуществляется на основе «Положение о балльно-рейтинговой системе оценки успеваемости студентов МГОУ».

Шкала соответствия рейтинговых оценок пятибалльным оценкам:

	Оценка по 5-балльной системе	Оценка по 100-
		балльной системе
5	отлично	81 – 100
4	хорошо	61 - 80
3	удовлетворительно	41 - 60
2	неудовлетворительно	21 - 40
1	необходимо повторное изучение	0 - 20

В зачетно-экзаменационную ведомость и зачетную книжку выставляются оценки по пятибалльной шкале и рейтинговые оценки в баллах.

При получении студентом на экзамене или зачёте неудовлетворительной оценки в ведомость выставляется рейтинговая оценка в баллах (<40 баллов), соответствующая фактическим знаниям (ответу) студента.

Общее количество баллов по дисциплине – 100 баллов.

Максимальное количество баллов, которое можно набрать в течение семестра за посещаемость, выполнение лабораторных и домашних работ, выполнение самостоятельной работы -80 баллов.

Процедура оценивания знаний и умений состоит из следующих составных элементов.

1. Учет посещаемости и работы на лекционных и практических занятиях. Максимальный балл — 54 балла.

За посещение лекционных занятий и написание конспектов обучающийся может набрать максимально 18 баллов.

За выполнение практических заданий на практических занятиях, обучающийся может набрать максимально 36 баллов (18 заданий по 2 балла).

- 2. Учет результатов самостоятельной работы, максимальный балл 26 баллов
 - решение задач до 18 баллов (9 задач по 2 балла)
 - выполнение контрольной работы до 6 баллов
 - выполнение реферата/доклада до 2 баллов

Обучающийся, набравший в процессе обучения 41 балл и более, допускается к зачету.

Общая максимальная сумма баллов, которые обучающийся может набрать при сдаче зачета, составляет 20 баллов.

При пересдаче экзамена или зачета используется следующее правило для формирования рейтинговой оценки:

- 1-я пересдача фактическая рейтинговая оценка, полученная студентом за ответ, минус 5 (баллов);
- 2-я пересдача фактическая рейтинговая оценка, полученная студентом за ответ, минус 8 (баллов).

Учет посещаемости лекционных и лабораторных занятий осуществляется по ведомости, представленной ниже в форме таблицы.

Московский государственный областной университет Ведомость учета посещения Физико-математический факультет

Направление подготовки: 44.03.01 – Педагогическое образование

Профиль подготовки: Математика Дисциплина: Теория алгоритмов

Группа: 31

Преподаватель: Борисова Н.В.

№ п/п	Фамилия И.О.		Посещение занятий							
		1	2	3	4				18	
1.	Иванов И.И.	+	-	+	-				+	10
2.	Петров П.П.	+	+	+	+				+	18

Московский государственный областной университет Ведомость учета текущей успеваемости Физико-математический факультет

Направление подготовки: 44.03.01 – Педагогическое образование

Профиль подготовки: Математика Дисциплина: Теория алгоритмов

Группа: 31

Преподаватель: Иванов И.И.

№		Сумма ба	ллов, набр	анных в (семестре	Общая сумма баллов	Итого	Итоговая оценка	Подпись препода- вателя
п/ п	Ф. И.О.	Посещ. лекций до 18	Практич. занятия до 36	Реферат до 2 баллов	Конт/раб до 6 баллов	На зачете (макс. 20)		пропись	
		баллов	баллов			(======================================			
1	2	3	4	5	6	5	6	7	8
1.	Агеев И.И.	10	34	1	5	20	70	Зачтено	Иванов И.И.
2.	Петров П.П.	18	30	2	6	18	74	Зачтено	Иванов И.И.
3.									

Структура оценивания ответа на зачете

Для сдачи зачета необходимо выполнить все задания текущего контроля. Существенным моментом является посещаемость занятий и работа студентов на занятиях (в случае пропусков занятий предполагается более подробный опрос по пропущенным темам). На зачет выносится материл, излагаемый в лекционном курсе и рассматриваемый при выполнении лабораторных работ. Для получения зачета надо ответить на теоретический вопрос и правильно решить задачу. В затруднительных ситуациях (в отдельных случаях) допускается на зачете воспользоваться тетрадью с записями материалов лекций и лабораторных работ в присутствии преподавателя. При этом преподаватель может убедиться, в какой степени студент ориентируется в «своих» материалах и по ряду дополнительных вопросов (по тетради) решить вопрос о зачете.

Шкала	Показатели степени обученности
0-2	Отличает какой-либо процесс, объект и т.п. от их аналогов только тогда, когда
баллов	ему их предъявляют в готовом виде.
3-5	Демонстрирует полное воспроизведение изученных правил, законов, формули-
баллов	ровок, математических и иных формул и т.п., однако затрудняется что-либо объяснить.
6-9	Объясняет отдельные положения усвоенной теории, иногда выполняет такие
баллов	мыслительные операции, как анализ и синтез.
	Отвечает на большинство вопросов по содержанию теории, демонстрируя осо-
	знанность усвоенных теоретических знаний, проявляя способность к самостоя-
	тельным выводам и т.п.
10-14	Четко и логично излагает теоретический материал, свободно владеет понятиями
балла	и терминологией, способен к обобщению изложенной теории, хорошо видит
	связь теории с практикой, умеет применить ее в простейших случаях.
	Демонстрирует полное понимание сути изложенной теории и применяет ее на
	практике легко и не особенно задумываясь. Выполняет почти все практические
	задания, иногда допуская незначительные ошибки, которые сам и исправляет
15-20	Легко выполняет практические задания на уровне переноса, свободно оперируя
	усвоенной теорией в практической деятельности.
	Оригинально, нестандартно применяет полученные знания на практике, форми-
	руя самостоятельно новые умения на базе полученных ранее знаний и сформи-

Оценка	Критерии оценивания	Баллы
Зачтено	Полные и точные ответы на вопрос из перечня вопросов к зачету;	81-100
	знание основных терминов и понятий курса; последовательное изложение материала курса.	61-80
	Умение формулировать некоторые обобщения по теме вопросов; достаточно полные ответы на вопросы.	41-60
Не зачтено	Не полный и точный ответ на вопрос из перечня вопросов к зачету; недостаточно последовательное изложение материала курса.	0 - 40

Критерии и шкала оценивания конспекта

Критерий	
Текст конспекта логически выстроен и точно изложен, ясен весь ход рассужде-	
- RUH	0.5
Даны ответы на все поставленные вопросы, изложены научным языком, с при-	0,5
менением терминологии	
Ответ на каждый вопрос заканчиваться выводом, сокращения слов в тексте от-	
сутствуют (или использованы общепринятые)	
Оформление соответствует образцу. Представлены необходимые таблицы и схе-	
МЫ	

По результатам оценивания обучающийся может получить:

Пороговый уровень – до 1 балла;

Продвинутый уровень – 1,5-2 балла.

Критерии и шкала оценивания реферата (доклада)

Критерий	Баллы
Обзор источников информации	
Логика изложения материала	0,5
Убедительность сформулированных выводов	
Качество оформления	

По результатам оценивания обучающийся может получить:

Пороговый уровень – до 1 балла;

Продвинутый уровень – 1,5-2 балла.

Шкала оценивания контрольной работы

Показатель	Баллы
Выполнено до 40% заданий	

Выполнено 41-60% заданий	
Выполнено 61-80% заданий	
Выполнено более 81% заданий	

Критерии и шкала оценивания работы студентов на практических работах

Шкала	Показатели степени облученности
	Присутствовал на занятии, слушал, смотрел, записывал под диктовку, переписывал с доски и т.п. Отличает какой-либо процесс, объект и т.п. от их аналогов только тогда, когда ему их предъявляют в готовом виде.
1 балла	Запомнил большую часть текста, правил, определений, формулировок, законов и т.п., но объяснить ничего не может (механическое запоминание). Демонстрирует полное воспроизведение изученных правил, законов, формулировок, математических и иных формул и т.п., однако затрудняется что-либо объяснить.
	Объясняет отдельные положения усвоенной теории, иногда выполняет такие мыслительные операции, как анализ и синтез. Отвечает на большинство вопросов по содержанию теории, демонстрируя осознанность усвоенных теоретических знаний, проявляя способность к самостоятельным выводам и т.п.
	Четко и логично излагает теоретический материал, свободно владеет понятиями и терминологией, способен к обобщению изложенной теории, хорошо видит связь теории с практикой, умеет применить ее в простейших случаях. Демонстрирует полное понимание сути изложенной теории и применяет ее на практике легко и не особенно задумываясь. Выполняет почти все практические задания, иногда допуская незначительные ошибки, которые сам и исправляет Легко выполняет практические задания на уровне переноса, свободно оперируя усвоенной теорией в практической деятельности. Оригинально, нестандартно применяет полученные знания на практике, формируя самостоятельно новые умения на базе полученных ранее знаний и сформированных умений и навыков.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная литература

- 1. Демидович, Б.П. Основы вычислительной математики [Текст] : учеб.пособие / Б. П. Демидович, И. А. Марон. 8-е изд.,стереотип. СПб. : Лань, 2019. 672с. Текст: непосредственный.
- 2. Петров И.Б. Введение в вычислительную математику / И.Б. Петров, А.И. Лобанов. Электрон. текстовые данные. М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 352 с. URL: http://www.iprbookshop.ru/62810.html. (дата обращения: 07.08.2019). Режим доступа: для авториз. пользователей Электронно-библиотечная систе-

- ма «IPRbooks». Текст : электронный.
- 3. Копченова, Н.В. Вычислительная математика в примерах и задачах : учебное пособие / Н.В. Копченова, И.А. Марон. 4-е изд., стер. Санкт-Петербург : Лань, 2017. 368 с. ISBN 978-5-8114-0801-6. URL: https://e.lanbook.com/book/96854 (дата обращения: 07.08.2019). Режим доступа: для авториз. пользователей Электронно-библиотечная система «Лань». Текст : электронный.

6.2. Дополнительная литература

- 1. Демидович, Б.П. Основы вычислительной математики: учебное пособие / Б.П. Демидович, И.А. Марон. 8-е изд., стер. Санкт-Петербург: Лань, 2011. 672 с. ISBN 978-5-8114-0695-1. URL: https://e.lanbook.com/book/2025 (дата обращения: 07.08.2019). Режим доступа: для авториз. пользователей Электронно-библиотечная система «Лань». Текст: электронный
- 2. **Игошин, В.И.** Математическая логика и теория алгоритмов: учеб.пособие для вузов / В. И. Игошин. 3-е изд.,стереотип. М.: Академия, 2008. 448с. Текст: непосредственный.
- 3. **Игошин В.И.** Задачи и упражнения по математической логике и теории алгоритмов: учеб.пособие для вузов / В. И. Игошин. 3-е изд.,стереотип. М.: Академия, 2007. 304с. Текст: непосредственный.
- 4. Игошин В.И. Теория алгоритмов: Учебное пособие / В.И. Игошин. М.: ИНФРА-М, 2012. 318 с. (Высшее образование). ISBN 978-5-16-005205-2 Режим доступа: http://znanium.com/catalog/product/241722 (дата обращения: 07.08.2019). Режим доступа: для авториз. пользователей Электронно-библиотечная система «znanium.com». Текст: электронный.
- 5. Пантина, И. В. Вычислительная математика: учебник / И. В. Пантина, А. В. Синчуков. 2-е изд., перераб. и доп. М.: МФПУ Синергия, 2012. 176 с. (Университетская серия). URL: http://znanium.com/bookread2.php?book=451160. (дата обращения: 07.08.2019). Режим доступа: для авториз. пользователей Электроннобиблиотечная система «znanium.com». Текст: электронный.
- 6. Зализняк, В. Е. Теория и практика по вычислительной математике : учеб. пособие / В. Е. Зализняк, Г. И. Щепановская. Красноярск : Сиб. федер. унт, 2012. 174 с. URL: http://znanium.com/catalog.php?bookinfo=441232. (дата обращения: 07.08.2019). Режим доступа: для авториз. пользователей Электронно-библиотечная система «znanium.com». Текст : электронный.
- 7. Марчук, Г.И. Методы вычислительной математики : учебное пособие / Г.И. Марчук. 4-е изд., стер. Санкт-Петербург : Лань, 2009. 608 с. ISBN 978-5-8114-0892-4. URL: https://e.lanbook.com/book/255 (дата обращения: 07.08.2019). Режим доступа: для авториз. пользователей Электронно-библиотечная система «Лань». Текст : электронный

- 8. Игошин, В.И. Теория алгоритмов и теория алгоритмов [Текст]/ В.И. Игошин. М.: Академия, 2008. 448 с.
- 9. Лихтарников, Л.М. Теория алгоритмов. Курс лекций. Задачник-практикум и решения [Текст] / Л.М. Лихтарников, Т.Г. Сукачева. СПб.: Лань, 1999. 288 с.
- 10. Ершов, Ю.Л. Теория алгоритмов. [Текст]/ Ю.Л. Ершов, Е.А. Палютин. СПб.: Лань, 2004. 336 с.
- 11.Колмогоров, А.Н. Теория алгоритмов [Текст] / А.Н. Колмогоров, А.Г. Драгалин. М.: КомКнига, 2006. 240 с.
- 12. Манин, Ю.И. Лекции по математической логике [Текст] / Ю.И. Манин. М., 1974.
- 13.Новиков, П.С. Элементы математической логики [Текст] / П.С. Новиков. М.: Наука, 1973.-400 с.
- 14. Успенский, В.А. Вводный курс математической логики [Текст] / В.А. Успенский, Н.К. Верещагин, В.Е. Плиско. М.: Физматлит, 2004 128 с.
- 15.Рябенький, В. С. Введение в вычислительную математику [Электронный ресурс] / В. С. Рябенький. 3-е изд., испр. и доп. М.: ФИЗМАТЛИТ, 2008. 288 с. (Физтеховский учебник). Режим доступа: http://znanium.com/bookread2.php?book=544692. (дата обращения: 07.08.2019). Режим доступа: для авториз. пользователей Электроннобиблиотечная система «znanium.com». Текст: электронный.
- 16. Алгоритмы вычислительной математики: учеб.-метод. пособие по курсу «Основы алгоритмизации и программирования» / А.К. Синицын, А.А. Навроцкий. Минск: БГУИР, 2007. 80 с.
- 17.Воеводин В.В. Вычислительная математика и структура алгоритмов: Учебное пособие. М.: Изд-во МГУ, 2006. 112 с.
- 18.Косарев В.И. 12 лекций по вычислительной математике. М. : Физматкнига, 2013. 240 с.
- 19. Практические занятия по вычислительной математике: учебное пособие / Е.Н. Аристова, Н.А. Завьялова, А.И. Лобанов. Часть І. М.: МФТИ, 2014. 243 с.
- 20. Упражнения и задачи контрольных работ по вычислительной математике. Часть 1 / под ред. В.В. Демченко. М.: МФТИ, 2013. 143 с.
- 21. Бахвалов Н. С. Численные методы [Текст] / Бахвалов Н. С. М.: Наука, 1973.
- 22. Бахвалов И.В., Жидков Н. П., Кобельков Г.М. Численные методы [Текст] / Бахвалов И.В., Жидков Н. П., Кобельков Г.М.— М.: Лаборатория базовых знаний, 2000.-624 с.
- 23. Березин И. С., Жидков И.П. Методы вычислений [Текст] / Березин И. С., Жидков И.П. –М.: Наука, 1966.
- 24.Вержбицкий В.М. Основы численных методов. [Текст] / Вержбицкий В.М. М.: Высшая школа, 2009
- 25.Вержбицкий В. М. Численные методы (Линейная алгебра и нелинейные уравнения) [Текст] / Вержбицкий В. М.– М.: Высшая школа, 2001. –266 с.

- 26.Вержбицкий В. М. Численные методы (Математический анализ и обыкновенные дифференциальные уравнения) [Текст] / Вержбицкий В. М.— М.: Высшая школа, 2001. 266 с.
- 27. Гловацкая А.П. Методы и алгоритмы вычислительной математики: Учеб. пособие для вузов. М.: Радио и связь, 1999. 408 с.
- 28. Данилина Н.И., Дубровская Н.С., Кваша О.П., Смирнов Г. Л. [Текст] / Данилина Н.И., Дубровская Н.С., Кваша О.П., Смирнов Г. Л. М.: Высшая школа, 1985.
- 29.Исаков В. Н. Элементы численных методов [Текст] / Исаков В. Н. М.: ACADEMIA, 2003. 189 с.
- 30. Калиткин Н.П. Численные методы [Текст] / Калиткин Н.П. –М.: Наука, 1978.
- 31. Крылов В.И., Бобков В.В., Монастырский П.И. Вычислительные методы Т.1,2. [Текст] / Крылов В.И., Бобков В.В., Монастырский П.И.–М.: Наука, 1977.
- 32.Лапчик М.П. Численные методы: учеб.пособие для вузов / М. П. Лапчик, М. И. Рагулина, Е. К. Хеннер. 4-е изд.,стереотип. М. : Академия, 2008. 384с. Текст: непосредственный.
- 33.Петров И.Б., Лобанов А.И. Лекции по вычислительной математике: учеб. Пособие. М.: Интернет-Университет Информационных Технологий; БИ-НОМ. Лаборатория знаний, 2006. 523 с.: ил., табл. (Серия «Основы информационных технологий»).
- 34. Пирумов У.Г. Численные методы: учеб.пособие для вузов / У. Г. Пирумов. 2-е изд.,доп. М.: Дрофа, 2003. 224с. Текст: непосредственный.
- 35.Пулькин С. П., Никольская Л.Н., Дьячков А. С. Вычислительная математика [Текст] / Пулькин С. П., Никольская Л.Н., Дьячков А. С. –М.: Просвещение, 1980.
- 36. Рябенький В. С. Введение в вычислительную математику. М.: Физматлит, 2007. 288 с.
- 37. Сборник задач по основам вычислительной математики / под ред. О. М. Белоцековского. М.: МФТИ, 1974. 148 с.

6.3. Ресурсы информационно-телекоммуникационной сети «Интернет»

- 1. Алгоритмы, методы, исходники URL:http://algolist.manual.ru/
- 2. Введение в вычислительную математику. Учебный курс.[Электронный ресурс] НОУ ИНТУИТ Режим доступа: http://www.intuit.ru/studies/courses/1012/168/info
- 3. Вычислительная математика. Учебный курс.[Электронный ресурс] НОУ ИНТУИТ Режим доступа: http://www.intuit.ru/studies/courses/2317/617/info
 - 4. Искусство создания игр URL:http://requier.kulichki.com/html/lesson3.html
 - 5. Математический портал URL: http://www.allmath.ru/
 - 6. Форум компьютерной помощи URL:http://pchelpforum.ru/
 - 7. Форум программистов и сисадминов URL:http://www.cyberforum.ru/

8. Численные методы решения уравнений в частных производных. Учебный курс.[Электронный ресурс] — НОУ ИНТУИТ Режим доступа: http://www.intuit.ru/studies/courses/1181/374/info

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

- 1. Грань Т.Н., Холина С.А. Методические рекомендации по проведению лекционных занятий.
- 2. Грань Т.Н., Холина С.А. Методические рекомендации об организации выполнения и защиты курсовой работы.
- 3. Грань Т.Н., Холина С.А. Методические рекомендации по проведению лабораторных и практических занятий.

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБ-РАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows

Microsoft Office

Kaspersky Endpoint Security

Информационные справочные системы:

Система ГАРАНТ

Система «КонсультантПлюс»

Профессиональные базы данных

fgosvo.ru

pravo.gov.ru

www.edu.ru

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения занятий лекционного и семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные учебной мебелью, доской, демонстрационным оборудованием.
- помещения для самостоятельной работы, укомплектованные учебной мебелью, персональными компьютерами с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду МГОУ;

- помещения для хранения и профилактического обслуживания учебного оборудования, укомплектованные мебелью (шкафы/стеллажи), наборами демонстрационного оборудования и учебно-наглядными пособиями;
- лаборатория, оснащенная лабораторным оборудованием: комплект учебной мебели, проектор, проекционная доска, персональный компьютер с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду МГОУ.