Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор МИНИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ

Дата подписания: 24.10-2024 14:21-41 осударственное образовательное учреждение высшего образования Московской области Уникальный программный ключ: МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ 6b5279da4e034bff679172803da5b7b559fc69e2 (МГОУ)

> Факультет технологии и предпринимательства Кафедра современных промышленных технологий, робототехники и компьютерной графики

Согласовано управлением организации и образовательной контроля качества деятельности

« 24 » mapine Начальник управления

/Р.В. Самолетов/

2022 P./

Одобрено учебно-методическим советом

Протокой « 224» 2022 г. № 93 Председатель

/М.А. Миненкова/

Рабочая программа дисциплины

Образовательная робототехника

Направление подготовки

44.03.05 Педагогическое образование (с двумя профилями подготовки)

Профиль:

Технологическое образование (проектное обучение) и образовательная робототехника

Квалификация

Бакалавр

Форма обучения

Очная

Согласовано учебно-методической комиссией Рекомендовано кафедрой современных факультета

предпринимательства

технологии

Протокол «15» марта 2022 г. № 8

Председатель УМКом

/А.Н. Хаулин/

промышленных технологий, робототехники и компьютерной/графики

Протокол от «10» марта 2022 г./ No 11 И.о.зав. кафедрой

/М.Г. Қорецкий/

Мытищи 2022

Автор-составитель:

Хасаншина Н.З. – доцент кафедры современных промышленных технологий, робототехники и компьютерной графики

Рабочая программа дисциплины «Образовательная робототехника» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки), утвержденного приказом МИНОБРНАУКИ РОССИИ от 22.02.2018 № 125.

Дисциплина входит в модуль «Образовательная робототехника» обязательной части Блока 1 «Дисциплины (модули)» и является обязательной для изучения.

Реализуется в формате электронного обучения с применением дистанционных образовательных технологий.

Год начала подготовки (по учебному плану) 2022

СОДЕРЖАНИЕ

1. Планируемые результаты обучения	4
2. Место дисциплины в структуре образовательной программы	4
3. Объем и содержание дисциплины	5
4. Учебно-методическое обеспечение самостоятельной работы обучающихся	6
5. Фонд оценочных средств для проведения текущей и промежуточной	9
аттестации по дисциплине	
6. Учебно-методическое и ресурсное обеспечение дисциплины	19
7. Методические указания по освоению дисциплины	21
8. Информационные технологии для осуществления образовательного	22
процесса по дисциплине	
9. Материально-техническое обеспечение дисциплины	22

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цели и задачи дисциплины

Цель дисциплины: является ознакомление студентов с применением робототехнических конструкторов в образовательной деятельности школьников.

Задачи дисциплины:

- формирование у студентов знаний программирования робототехнических систем;
- развитие творческих способностей студентов;
- формирование у студентов знаний по конструированию роботов и автоматических устройств.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

ОПК-5. Способен осуществлять контроль и оценку формирования результатов образования обучающихся, выявлять и корректировать трудности в обучении

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в модуль «Образовательная робототехника» обязательной части Блока 1 «Дисциплины (модули)» и является обязательной для изучения.

Для освоения дисциплины «Образовательная робототехника» студенты используют знания, умения и виды деятельности, сформированные в процессе изучения дисциплин «Черчение», «Математика», «Обработка конструкционных материалов», «Охрана труда и технические измерения», «Практикум по обработке конструкционных материалов», «Информационные технологии в техническом проектировании. 3D-моделирование», «Теория механизмов и машин» на предыдущих уровнях образования.

Освоение дисциплины «Образовательная робототехника» может быть полезно для самосовершенствования в профессиональной деятельности, внедрения новых технологий в культурно-просветительскую, научную и образовательную сферу, последующего изучения таких дисциплин как: «Теория механизмов и машин», «Детали машин», «Техническое конструирование и моделирование», «3D-моделирование и прототипирование с использование Autodesk Fusion 360», прохождения научно-педагогической и преддипломной практики, выполнения выпускной квалификационной работы.

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Показатель объема дисциплины	Форма обучения
	Очная
Объем дисциплины в зачетных единицах	8
Объем дисциплины в часах	288
Контактная работа:	164,6
Лекции	54 (6) ¹
Практические занятия	110
Контактные часы на промежуточную аттестацию:	0,6
Зачет	0,2
Зачет с оценкой	0,4
Самостоятельная работа	100
Контроль	23,4

¹ Реализуется в формате электронного обучения с применением дистанционных образовательных отношений

Форма промежуточной аттестации: зачет в 4 семестре, зачет с оценкой в 5 и 6 семестрах.

3.2. Содержание дисциплины

Наименование тем дисциплины с кратким содержанием		Часов Пра кти чес кие зан яти я
Тема 1. Образовательная робототехника.	8 (2)	14
Тема 2 Конструкторы Spike, NXT, EV3, RobotC, Arduino, Raspberry	8	14
Тема 3 Соревнования роботов	8	14
Тема 4 Базовые задачи Spike, NXT, EV3	8	14
Тема 5 Расширенные задачи Spike, NXT, EV3	8 (2)	14
Тема 6 Роботы LEGOMindstorms: сложные модели	8	14
Тема 7 Робот-исследователь.	2	14
Тема 8 Лего-соревнования: решение поставленных задач	4 (2)	12
Итого:	54(6) ²	110

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Темы для самостоятельного изучения	Изучаемые вопросы	Кол- во часов	Формы самостоят ельной работы	Методичес кое обеспечени е	Форма отчетности
Тема 1.1. Образовательная робототехника.	Методика использования образовательно й робототехники в учебно-исследовательс кой деятельности обучающихся при технологическо й подготовке	12	Работа с литератур ой, Интернет	Список рекоменд. литературы; интернетресурсы	Конспект
Тема 1.2. Конструкторы Spike,	Конструкторы Spike, NXT,	12	Работа на ПК,	Список рекоменд.	Сообщение Конспект

 $^{^{2}}$ Реализуется в формате электронного обучения с применением дистанционных образовательных отношений

NXT, EV3, RobotC, Arduino, Raspberry	EV3, RobotC, Arduino, Raspberry		работа с литератур ой, Интернет	литературы; интернет- ресурсы.	
Тема 1.3. Соревнования роботов	Соревнования роботов	12	Работа на ПК, работа с литератур ой, Интернет	Список рекоменд. литературы; интернет- ресурсы.	Сообщение Конспект
Тема 1.4. Базовые задачи Spike, NXT, EV3	Базовые задачи Spike, NXT, EV3	12	Работа на ПК, работа с литератур ой, Интернет	Список рекоменд. литературы; интернет- ресурсы	Сообщение Конспект
Тема 1.5. Расширенные задачи Spike, NXT, EV3	Расширенные задачи Spike, NXT, EV3	12	Работа на ПК, работа с литератур ой, Интернет	Список рекоменд. литературы; интернет- ресурсы.	Сообщение Конспект
Тема 1.6. Роботы LEGOMindstorms: сложные модели	Методика работы с комплектом оборудования LEGO MindstormsEV3 на уроках технологии	12	Работа на ПК, работа с литератур ой, Интернет	Список рекоменд. литературы; интернетресурсы.	Сообщение Конспект
Тема 1.7. Робот- исследователь.	Робот- исследователь.	12	Работа на ПК, работа с литератур ой, Интернет	Список рекоменд. литературы; интернет- ресурсы	Сообщение Конспект
Тема 1.8. Лего- соревнования: решение поставленных задач	Лего- соревнования	16	Работа на ПК, работа с литератур ой, Интернет	Список рекоменд. литературы; интернетресурсы.	Сообщение Конспект Тест
	Итого:	100			

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код и наименование	Этапы	Формы учебной работы по формированию
компетенции	формирования	компетенций в процессе освоения
	компетенции	образовательной программы
	Когнитивный	1.Работа на учебных занятиях
ОПК-5. Способен		2.Самостоятельная работа
осуществлять контроль и		
оценку формирования	Операционный	1.Работа на учебных занятиях
результатов образования	1	2.Самостоятельная работа
обучающихся, выявлять и		1
корректировать трудности	Деятельностный	1.Работа на учебных занятиях
в обучении	делгеныностивн	2.Самостоятельная работа
		cacococococo.

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

ОПК-5. Способен осуществлять контроль и оценку формирования результатов образования обучающихся, выявлять и корректировать трудности в обучении

Этапы форми	Уровн и			Шкала оценивания
ровани	освоен			
Я	ΝЯ	Описание		
компет	состав	показателей	Критерии оценивания	Выражение в
енции	ляюще	показателен		баллах БРС
	й			Ualilax DFC
	компет			
	енции			
Когни		Знание основных	Неполное и слабое знание	
тивны		методов, способов	основных возможностей	
й		и средств	компьютера для получения,	
		получения,	хранения, переработки	
		хранения,	теоретического материала	
	базов	переработки	дисциплины «Образовательная	
	оазов ый	теоретического	робототехника» для	41-60
	ыи	материала	осуществления контроля и	
		дисциплины	оценки формирования	
		«Образовательная	результатов образования	
		робототехника»,	обучающихся	
		знание общих		
		возможностей		

	повы шенн ый	компьютера как средства управления текстовой и графической информации по образовательной робототехнике для осуществления контроля и оценки формирования результатов	Знание основных возможностей компьютера для получения, хранения, переработки теоретического материала дисциплины «Образовательная робототехника» для осуществления контроля и оценки формирования результатов образования обучающихся	61 - 80
	продв инуты й	образования обучающихся	Уверенное знание основных возможностей компьютера для получения, хранения, переработки теоретического материала дисциплины «Образовательная робототехника» для осуществления контроля и оценки формирования результатов образования обучающихся	81 - 100
Опера ционн ый	базов ый	Умение выбирать методы, способы и средства получения, хранения, переработки теоретического материала дисциплины «Образовательная робототехника», знание общих возможностей компьютера как средства	Неполное и слабо закрепленное умение применять знания основных возможностей компьютера для получения, хранения, переработки теоретического материала дисциплины «Образовательная робототехника» для осуществления контроля и оценки формирования результатов образования обучающихся	41-60
	повы шенн ый	управления текстовой и графической информации по образовательной робототехнике для осуществления контроля и оценки формирования результатов образования	Умение применять знания основных возможностей компьютера для получения, хранения, переработки теоретического материала дисциплины «Образовательная робототехника» для осуществления контроля и оценки формирования результатов образования обучающихся	61 - 80

		обучающихся	Уверенное умение применять	
			знания основных возможностей	
			компьютера для получения,	
			хранения, переработки	
	продв		теоретического материала	
	инуты		дисциплины «Образовательная	81 - 100
	й		робототехника» для	
			осуществления контроля и	
			оценки формирования	
			результатов образования	
			обучающихся	
Деяте			Накопление первоначального	
льнос			опыта осуществления работы с	
тный			операционной системой	
			Windows 7 Professional, а также	
	50000		программными средствами	
	базов		офисного назначения Microsoft	41-60
	ый		Office Excel, Microsoft Office	
			PowerPoint, Microsoft Office	
		Готовность	Word, с конструкторами Spike,	
		выбирать	NXT, EV3, RobotC, Arduino,	
		рациональный	Raspberry	
		метод, способ и	Уверенное владение базовыми	
		средства	операционными	
		получения,	компьютерными программы.	
		хранения,	Накопление полезного опыта	
		переработки	осуществления работы с	
		информации,	операционными системами	
	повы	готовность	Windows 7 Professional,	
	шенн	использовать	Windows 8 Enterprise, а также	61 - 80
	ый	современные новые	программными средствами	01 - 00
	DIVI	операционные	офисного назначения Microsoft	
		компьютерные	Office Excel, Microsoft Office	
		программы для	PowerPoint, Microsoft Office	
		выполнения	Word, с конструкторами Spike,	
		расчетов деталей	NXT, EV3, RobotC, Arduino,	
		простейших	Raspberry	
		конструкций для	P	
		осуществления	Быстрое и осознанное владение	
		контроля и оценки	операционными	
		формирования	компьютерными программами	
		результатов	операционными системами	
		образования	Windows 7 Professional,	
	продв	обучающихся	Windows 8 Enterprise, Windows	
	инуты		XP Professional, а также	81 - 100
	й		программными средствами	
			офисного назначения Microsoft Office Excel, Microsoft Office	
			PowerPoint, Microsoft Office	
			Word, с конструкторами Spike,	
			NXT, EV3, RobotC, Arduino,	
			Raspberry	
	1	1	Kasputiiy	

Шкала оценивания теста (зачет)

Написание теста оценивается по шкале от 0 до 40 баллов. Освоение компетенций зависит от результата написания теста:

pesymerana man		
	компетенции считаются освоенными на высоком	27-40 баллов (80-100%)
	уровне (оценка отлично)	правильных ответов)
	компетенции считаются освоенными на базовом	13-26 баллов (70-75 %
Tecm	уровне (оценка хорошо);	правильных ответов)
1 ecm	компетенции считаются освоенными на	1-12 баллов (50-65 %
	удовлетворительном уровне (оценка	правильных ответов)
	удовлетворительно);	,
	компетенции считаются не освоенными (оценка	0 баллов (менее 50
	неудовлетворительно).	% правильных ответов)

Шкала оценивания сообщения (зачет)

2244 4824250 424442 2226442442 2044425	24 болдор
если представленное сообщение свидетельствует о	34 баллов
проведенном самостоятельном исследовании с	
привлечением различных источников информации;	
логично, связно и полно раскрывается тема;	
заключение содержит логично вытекающие из	
содержания выводы.	
если представленное сообщение свидетельствует о	20 баллов
проведенном самостоятельном исследовании с	
привлечением двух-трех источников информации;	
логично, связно и полно раскрывается тема;	
заключение содержит логично вытекающие из	
содержания выводы.	
если представленное сообщение свидетельствует о	10 баллов
проведенном исследовании с привлечением одного	
источника информации; тема раскрыта не	
полностью; отсутствуют выводы.	
если сообщение отсутствует	0 баллов

Шкала оценивания теста(зачет с оценкой)

Написание теста оценивается по шкале от 0 до 34 баллов. Освоение компетенций зависит от результата написания теста:

		компетенции считаются освоенными на высоком	25-34 баллов (80-100%
		уровне (оценка отлично)	правильных ответов)
		компетенции считаются освоенными на базовом	13-24 баллов (70-75 %
7	Гест	уровне (оценка хорошо);	правильных ответов)
1	ecm	компетенции считаются освоенными на	1-12 баллов (50-65 %
		удовлетворительном уровне (оценка	правильных ответов)
		удовлетворительно);	
		компетенции считаются не освоенными (оценка	0 баллов (менее 50
		неудовлетворительно).	% правильных ответов)

Шкала оценивания сообщения (зачет с оценкой)

если представленное сообщение свидетельствует о проведенном самостоятельном исследовании с привлечением различных источников информации; логично, связно и полно раскрывается тема; заключение содержит логично вытекающие из содержания выводы.	30 баллов
если представленное сообщение свидетельствует о проведенном самостоятельном исследовании с привлечением двух-трех источников информации; логично, связно и полно раскрывается тема; заключение содержит логично вытекающие из содержания выводы.	17 баллов
если представленное сообщение свидетельствует о проведенном исследовании с привлечением одного источника информации; тема раскрыта не полностью; отсутствуют выводы.	8 баллов
если сообщение отсутствует	0 баллов

Шкала оценивания конспекта зачет/зачет с оценкой

Балл	Критерии оценивания
6-5 баллов	Конспект в полном объеме передает смысл и содержание лекции, составлен с использованием элементов стенографии, дополнен сведениями из рекомендованных источников.
4-2 балла	Конспект в основном (более 50%) передает смысл и содержание лекции, составлен с использованием элементов стенографии, дополнен сведениями из рекомендованных источников.
0-1	Конспект передает смысл и содержание лекции менее, чем на 50%, составлен без использования элементов стенографии, сведения из рекомендованных источников отсутствуют.

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Пример тестирования

Тест №1

Собрать механизм преобразования вращательных движений — зубчатую передачу с различными значениями передаточного числа. Рассчитать передаточное число для каждой модели.

Ответить на теоретические вопросы:

- 1. Совокупность механизмов, заменяющих человека или животное в определенной области; преобразует энергию из одного вида в другие (в основном, в тепловую энергию) это:
- А) Механизм;
- Б) Робот;
- В) Машина.
- 2. Слово «Робот» было придумано:
- А) К. Чапек;
- Б) Аль-Джазари;
- В) Л.Давинчи.
- 3. Робот-гуманоид, т.е. антропоморфная, имитирующая человека машина, стремящаяся заменить человека в любой его деятельности это:
- А) Звероробот;
- Б) Андроид;
- В) Биоробот.
- 4. Ламповый триггер изобрел:
- А) И.С. Брук;
- Б) Б. И. Рамеев;
- В) М. А. Бонч-Бруевич.
- 5. Первый самоходный аппарат для исследования Луны назывался:
- A) «Луна-17»;
- Б) «Луноход-1»;
- В) «Протон-К».
- 6. Датчик это...
- а) элемент автоматики, преобразующий самые разные физические величины (размеры, температуру, давление, расход, скорость, уровень, влажность и др.) в электрический сигнал;
- б) устройство, преобразующее контролируемую величину в такой вид сигнала, который более удобен для воздействия на последующие элементы автоматики;
- в) чувствительный элемент, преобразующий параметры среды в пневматический сигнал.
- 7. Внешне они выглядят, как коробочки с выпуклым матовым стеклом, обращенным к зоне охраны. «Матовое стекло» не однородно, а разграничено на сектора с разным углом наклона и плотности относительно поверхности, какой это датчик?
- А) датчик движения;
- б) датчик абсолютного давления;
- в) датчик относительного давления.
- 8. В общем виде датчик можно представить в виде?

- А) поляризатор, разветвители;
- б) источник света, светоприемное устройство;
- в) чувствительный элемент, преобразователь.
- 9. Какие датчики основаны на изменении индуктивного сопротивления электромагнитного дросселя при перемещении одной из подвижных его деталей
- а) пьезоэлектрические;
- б) емкостные;
- в) индуктивные.
- 10. Какая группа датчиков служит для преобразования неэлектрического контролируемого или регулируемого параметра в параметры электрической цепи?
- А) параметрические;
- б) емкостные;
- в) генераторные.
- 11.Измерительный преобразователь в виде реостата, сопротивление которого изменяется пропорционально измеряемой величине (линейному или угловому перемещению).
- А) ультразвуковой датчик;
- б) реостатный датчик;
- в) датчик движения.
- 12. Какой датчик представляет собой конденсатор, в котором емкостное сопротивление изменяется при изменении измеряемой (регулируемой) неэлектрической величины
- а) индуктивный;
- в) емкостной датчик;
- в) микроволновой.
- 13. Датчики предназначены для преобразования неэлектрического контролируемого или регулируемого параметра в ЭДС. Эти датчики не требуют постороннего источника энергии, так как сами являются источником ЭДС.
- А) генераторные датчики;
- б) параметрические датчики;
- в) контактные датчики.
- 14. На что следует обращать внимание при выборе датчика?
- А) быстродействие и чувствительность;
- б) периодичность и максимальную частоту воздействий, атмосферные условия (влажность и температуру воздуха), наличие вибраций в установке;
- в) масса и цена.

15. Датчики, в которых изменяемое механическое перемещение преобразуется в замкнутое или разомкнутое состояние контактов, управляющих электрической цепью.

- А) контактные датчики;
- б) бесконтактные датчики;
- в) неэлектрические датчики.

Правильные ответы к тесту

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
В	a	б	В	б	б	a	В	В	a	б	В	a	б	a

Представить выполненный тест в письменной форме.

Тест №2

Выполнить сборку модели робота манипулятора или Dinorex [динорекс] — роботтрицератопс, Mr. Beam [мистер бим] — робот-линейка и продемонстрировать его движения. Ответить на теоретические вопросы:

- 1) Платформа EV3 обозначает...
- А) третье поколение роботов;
- Б) эволюцию роботов;
- В) нумерация моделей;
- Г) количество программируемых блоков.
- 2) Интеллектуальный модуль EV3 это...
- А) совокупность датчиков и моторов;
- Б) центр управления извне;
- В) программируемый блок;
- Г) набор микросхем для радиоуправления.
- 3) В базовый набор LegoTechnic входят количество деталей равное ...
- A) 777;
- Б) 641;
- B) 1200;
- Γ) 594.
- 4) В базовый комплект Mindstorms EV3 не входит...
- А) датчик касания;
- Б) датчик температуры;
- В) датчик цвета;
- Г) инфракрасный маяк.
- 5) Операционная систем Не предполагает возможности управления роботом.

A) iOS;
Б) Android;
B) Windows phone.
6) Какое количество роботов можно собрать, орудуя базовым комплектом Mindstorms EV3?
A) 5;
Б) 17;
B) 1;
Γ) 12.
7) Какой вид связи не доступен для управления роботом Mindstorms EV3?
A) BLUETOOTH;
Б) Wi-Fi;
B) GSM.
8) Какой тип соединительных кабелей используется в наборе Mindstorms EV3?
A) RJ-12;
Б) RJ-45;
B)USB Type-C.
9) Какие платформы не поддерживают продукт для программирования (2 ответа)?
A) Chrome OS;
Б) Windows;
B) Mac OS;
Γ) Steam OS.
10) Какой (в основном) язык программирования используется для программирования
робота?
A) C#;
Б) С++;
B) JAVA;
Γ) F#.
11) Какой тип батареи использует программируемый блок EV3?
А) мизинчиковые;
Б) пальчиковые;
В) крона;
Г) большая.
12) Какое излучение используется в пульте управления?

А) инфракрасное;
Б) ультрафиолетовое;
В) радиоволны.
13) Какой тип батареи используется ИК-маяком (пульт управления)
А) крона;
Б) пальчиковые;
В) большая;
Г) мизинчиковые.
14) Сколько датчиков и двигателей можно подсоединить одновременно к одному
программируемому блоку EV3?
A) 3;
Б) 4;
B) 8;
Γ) 10.
15) Где можно запрограммировать модуль EV3?
А) С телефона (планшета);
Б) С компьютера;
В) С компьютера и телефона(планшета);
Г) С компьютера, телефона(планшета) и самого модуля.
16) Где получить дополнительные инструкции по сборке робота?
А) Бесплатно загрузить с официального сайта;
Б) Купить в интернет-магазине;
В) Через приложение для смартфона.
17) Файлы, какого формата не поддерживаются редактором контента?
A) MP4;
Б) MOV;
B) AVI;
Γ) WMV.
18) Какие моторы входят в набор Lego Mindstorms EV3?
А) Один большой сервомотор и один средний сервомотор;
Б) Два больших сервомотора и один средний сервомотор;
В) Два больших сервомотора и два средних сервомотора;
Г) Один большой сервомотор и три средних сервомотор.

19) Официальное приложение для управления роботом от LEGO MINDSTORMS.

- А) EV3 «Почини Фабрику»;
- Б) EV3 Programmer;
- B) EV3 Robot Commander;
- Γ) EV3 3D Builder.
- 20) Сколько времени требуется для зарядки аккумуляторной батареи LEGO MINDSTORMS?
- А)10 ч;
- Б) 4 ч;
- В) 30 мин;
- Г) 2 ч.
- 21) Сколько интеллектуальных модулей LEGO MINDSTORMS EV3 можно подключить шлейфом?
- А) до четырех модулей;
- Б) более пяти;
- В) не больше двух;
- Γ) один.
- 22) Адаптер Wi-Fi, который рекомендуется использовать с интеллектуальным модулем EV3.
- A) DSLG15;
- **Б)** SKYNET 300;
- B) DSR 500N;
- Γ) NETGEAR N150.
- 23) Что не входит в набор LEGO MINDSTORMS EV3?
- А) USB-кабель;
- Б) Соединительные кабели;
- В) Датчик скорости;
- Г) Модуль EV3.

Примерная тематика сообщений.

- 1. Датчики, применяемые в робототехнических конструкторах.
- 2. Сервоприводы, применяемые в робототехнических конструкторах.
- 3. Передачи, применяемые в робототехнических конструкторах.
- 4. Типы контролеров, применяемые в робототехнических конструкторах.
- 5. Основные значимые преимущества использования робототехнического конструктора Lego Mindstorms EV3.
- 6. Основные значимые преимущества использования робототехнического конструктора Lego Education WeDo.
- 7. Основные значимые преимущества использования робототехнического конструктора Lego technics.

- 8. Основные значимые преимущества использования робототехнического конструктора Arduino.
- 9. Основные значимые преимущества использования робототехнического конструктора Амперка.

Примерные вопросы к зачету:

- 1. Этапы автоматизации производства.
- 2. Степени автоматизации производства.
- 3. Общее и разное роботов и машин с ЧПУ.
- 4. Роботы-гуманоиды.
- 5. Промышленные роботы.
- 6. Обзор школьных робототехнических комплектов.
- 7. Автоматы и полуавтоматы.
- 8. Датчики, применяемые в робототехнических конструкторах.
- 9. Сервоприводы, применяемые в робототехнических конструкторах.
- 10. Передачи, применяемые в робототехнических конструкторах.

Примерные вопросы к зачету с оценкой:

- 1. Типы контролеров, применяемые в робототехнических конструкторах.
- 2. Основные значимые преимущества использования робототехнического конструктора Lego Mindstorms EV3.
- 3. Основные значимые преимущества использования робототехнического конструктора Lego Education WeDo.
- 4. Основные значимые преимущества использования робототехнического конструктора Lego technics.
- 5. Основные значимые преимущества использования робототехнического конструктора Arduino.
- 6. Основные значимые преимущества использования робототехнического конструктора Амперка.
- 7. Устройство и принцип работы гироскопического датчика.
- 8. Устройство и принцип работы ультразвукового датчика.
- 9. Устройство и принцип работы инфракрасного датчика.
- 10. Устройство и принцип работы лазерного датчика.
- 11. Устройство и принцип работы датчика освещенности/цвета.
- 12. Устройство и принцип работы кнопочного датчика вкл/выкл.
- 13. Устройство и принцип работы температурного датчика.
- 14. Устройство и принцип работы сервопривода Lego.
- 15. Алгоритм программирования составление блок-схем.

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Требования к тестированию

Предлагаемые тестовые задания по курсу предназначены для повторения пройденного материала и закрепления знаний, главная цель тестов – систематизировать знания студентов. Во всех тестовых заданиях необходимо выбрать правильный из предлагаемых ответов,

завершить определение либо вставить недостающий термин. Текущий контроль знаний в виде тестирования, проводится в рамках практического занятия.

Требования к сообщению

Сообщение – продукт самостоятельной работы студента, представляющий собой публичное выступление по представлению полученных результатов решения определенной учебнопрактической, учебно-исследовательской или научной темы.

Требования по оформлению сообщения

Последовательность подготовки сообщения:

- 1. Подберите и изучите литературу по теме.
- 2. Составьте план сообщения.
- 3. Выделите основные понятия.
- 4. Введите в текст дополнительные данные, характеризующие объект изучения.
- 5. Оформите текст письменно.
- 6. Подготовьте устное выступление с сообщением на учебном занятии Само выступление должно состоять из трех частей вступления (10-15% общего времени), основной части (60-70%) и заключения (20-25%).

Требования к оформлению текста

Общий объем не должен превышать 5 страниц формата А 4, абзац должен равняться 1,25 см.

Поля страницы: левое -3 см., правое -1,0 см., нижнее 2 см., верхнее -2 см. Текст печатается через 1,5 интервала. Если текст набирается в текстовом редакторе Microsoft Word, рекомендуется использовать шрифты: Times New Roman, размер шрифта -14 пт.

После заголовка, располагаемого посредине строки, не ставится точка. Не допускается подчеркивание заголовка и переносы в словах заголовка.

Страницы нумеруются в нарастающем порядке. Номера страниц ставятся внизу листа по центру, размер шрифта – 12 пт

Титульный лист включается в общую нумерацию, но

номер страницы на нем не проставляется (это не относится к содержанию сообщения).

Требования к Зачету (4 семестр) и Зачету с оценкой (5-6 семестр)

Промежуточная аттестация по дисциплине, определяющая степень усвоения знаний, умений и навыков студентов и характеризующая этапы формирования компетенций по учебному материалу дисциплины, проводится в виде экзамена.

К зачёту допускаются студенты, успешно выполнившие все задания на практических занятиях и в рамках самостоятельной работы, подготовившие сообщения на заданную тему и доложившие их на коллоквиуме.

Требования к зачету (4 семестр) и зачету с оценкой (5-6 семестр) зачет по дисциплине «Образовательная робототехника» проводится в конце 4-6 семестров. На зачете для демонстрации сформированных знаний, умений, навыков и компетенций студент должен ответить на два вопроса, связанных с изучаемыми в течение семестра информационными технологиями и продемонстрировать преподавателю навыки работы с данными технологиями на компьютере.

Оценка знаний студента в процессе экзамена осуществляется исходя из следующих

критериев:

- а) умение сформулировать определения понятий, данных в вопросе, с использованием специальной терминологии, показать связи между понятиями;
- б) способность дать развернутый ответ на поставленный вопрос с соблюдением логики изложения материала; проанализировать и сопоставить различные точки зрения на поставленную проблему;
- в) умение аргументировать собственную точку зрения, иллюстрировать высказываемые суждения и умозаключения практическими примерами на компьютере;

Шкала оценивания зачета

При оценке студента на зачете преподаватель руководствуется следующими критериями:

- 20-15 баллов устный ответ на вопросы констатирует прочные, четкие и уверенные знания об информационных технологиях, которые могут быть использованы для создания компьютерных тестов для научной, образовательной, культурно-просветительской сферы. Студент уверенно демонстрирует навыки работы с этими технологиями на компьютере, показывая умение анализировать полученные знания и подбирать наиболее рациональные приемы для выполнения поставленной задачи.
- 14-10 баллов устный ответ на вопросы констатирует уверенные знания об информационных технологиях, которые могут быть использованы для создания компьютерных тестов для научной, образовательной, культурно-просветительской сферы. Присутствуют незначительные погрешности, неточности в изложении теоретического материала. Студент демонстрирует навыки работы с основными технологиями на компьютере, показывая умение подбирать наиболее рациональные приемы для выполнения поставленной задачи.
- 9-6 баллов в устном ответе на теоретические вопросы представлены некоторые знания об информационных технологиях, которые могут быть использованы для создания компьютерных тестов для научной, образовательной, культурно-просветительской сферы. Устный ответ на вопросы показывает отдельные пробелы в знаниях студента. Студент демонстрирует навыки работы с наиболее важными технологиями на компьютере.
- 5-2 баллов устный ответ на теоретические вопросы содержит грубые ошибки в изложении теоретического материала, которые показывают значительные пробелы в знаниях студента. Практическая часть ответа отсутствует.
- 7-0 баллов студент объявляет о незнании ответа на поставленные теоретические вопросы и не может выполнить практическое задание.

Шкала оценивания зачета с оценкой

При оценке студента на зачете с оценкой преподаватель руководствуется следующими критериями:

- 30-25 баллов ставится при полных, исчерпывающих, аргументированных ответах на все основные и дополнительные вопросы на зачете с оценкой, отличающихся логической последовательностью и четкостью в выражении мыслей и обоснованностью выводов, демонстрирующих знания источников и литературы, понятийного аппарата и умение им пользоваться при ответе.
- 24-19 баллов ставится при полных, исчерпывающих, аргументированных ответах на все основные и дополнительные вопросы на зачете с оценкой, отличающихся логичностью, четкостью и знаниями понятийного аппарата и литературы по теме вопроса при незначительных упущениях при ответах.
- 18-8 баллов ставиться при неполных и слабо аргументированных ответах, демонстрирующих общее представление и элементарное понимание существа поставленных вопросов, понятийного аппарата и обязательной литературы.
- 7-0 баллов ставится при незнании и непонимании студентом существа вопросов экзамена.

Распределение баллов по видам работ (при зачете с оценкой)

Вид работы	Кол-во баллов (максимальное значение)		
Тест	до 34 баллов		
Сообщение	до 30 баллов		
Конспект	До 6 баллов		
Зачет с оценкой	до 30 баллов		

Распределение баллов по видам работ (при зачете)

Вид работы	Кол-во баллов (максимальное значение)		
Тест	до 40 баллов		
Сообщение	до 34 баллов		
Конспект	до 6 баллов		
Зачет	до 20 баллов		

Итоговая шкала оценивания по дисциплине (при зачете с оценкой)

При выставлении итоговой оценки преподавателем учитывается работа студента в течение всего срока освоения дисциплины, а также баллы, полученные на промежуточной аттестации

Цифровое	Выражение	Словесное выражение	Описание оценки в требованиях к уровню		
выражение	в баллах		и объему компетенций		
	БРС				
5	81-100	0	Освоен продвинутый уровень всех		
		Отлично	составляющих компетенций ОПК-5		
4	61-80	Vanarra	Освоен повышенный уровень всех		
		Хорошо	составляющих компетенций ОПК-5.		
3	41-60	Vyopyompomymovyyo	Освоен базовый уровень всех		
		Удовлетворительно	составляющих компетенций ОПК-5		
2	до 40	II average warms and the second	Не освоен базовый уровень всех		
		Неудовлетворительно	составляющих компетенций ОПК-5.		

Итоговая шкала оценивания по дисциплине (при зачете)

При выставлении итоговой оценки преподавателем учитывается работа студента в течение всего срока освоения дисциплины, а также баллы, полученные на промежуточной аттестации

Баллы, полученные магистрантом по текущему контролю и	Оценка в традиционной
промежуточной аттестации	системе
41-100 (зачтено)	Освоен продвинутый ,повышенный, базовый
	уровень всех составляющих компетенций ОПК-5
0-40 (не зачтено)	Не освоен базовый уровень
	всех составляющих компетенций ОПК-5

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная литература

- 1. Иванов, А. А. Основы робототехники: учебное пособие. 2-е изд. Москва : ИНФРА-М, 2022. 223 с. Текст: электронный. URL: https://znanium.com/catalog/product/1842546
- 2. Методика обучения образовательной робототехнике : учеб.пособие / Бычкова Д.Д.[и др.]. М. : МГОУ, 2020. 162с. Текст: непосредственный
- 3. Тарапата, В.В. Робототехника в школе : методика, программы, проекты / В. В. Тарапата, Н. Н. Самылкина. 2-е изд. Москва : Лаборатория знаний, 2021. 110 с. Текст : электронный. URL: https://www.iprbookshop.ru/109450.html

6.2. Дополнительная литература

- 1. Бурьков, Д. В. Математическое и имитационное моделирование электротехнических и робототехнических систем: учеб. пособие / Д. В. Бурьков, Ю. П. Волощенко. Ростов-на-Дону: Южный федеральный университет, 2020. 159 с. Текст: непосредственный. URL: https://biblioclub.ru/index.php?page=book&id=612169
- 2. Гайсина, С. В. Робототехника, 3D-моделирование, прототипирование : реализация современных направлений в дополнительном образовании : метод. рекомендации для педагогов. Санкт-петербург : KAPO, 2017. 208 с. Текст : электронный. URL : https://www.studentlibrary.ru/book/ISBN9785992512519.html
- 3. Галушкина, Н. П. Преемственность в развитии детей дошкольного и начального школьного возраста в условиях центра образовательной робототехники : учеб.-метод. пособие / Н. П. Галушкина, Л. А. Емельянова, И. Е. Емельянова. Челябинск : Южно-Уральский государственный гуманитарно-педагогический университет, 2017. 157 с. Текст : электронный. URL: https://www.iprbookshop.ru/83872.html
- 4. Кулаков, Д. Б. Роботы и робототехника: лабораторный практикум : учебное пособие / Д. Б. Кулаков, Б. Б. Кулаков. Москва : Российский университет дружбы народов, 2018. 124 с. Текст : электронный. URL: https://www.iprbookshop.ru/91065.html
- 5. Новые механизмы в современной робототехнике / под ред. В. А. Глазунова. Москва : Техносфера, 2018. 316 с. Текст : электронный. URL: $\frac{\text{https://www.iprbookshop.ru/93375.html}}{\text{ttps://www.iprbookshop.ru/93375.html}}$
- 6. Огановская, Е. Ю. Робототехника, 3D-моделирование и прототипирование на уроках и во внеурочной деятельности: 5-7, 8(9) классы. Санкт-петербург: KAPO, 2017. 256 с. Текст: электронный. URL: https://www.studentlibrary.ru/book/ISBN9785992512557.html
- 7. Основы робототехники на Lego Mindstorms EV3 : учеб.пособие / Добриборщ Д.Э. [и др.]. 2-е изд. СПб. : Лань, 2019. 108с. Текст: непосредственный
- 8. Основы робототехники : учебное пособие / В. С. Глухов, А. А. Дикой, Р. А. Галустов, И. В. Дикая. Армавир : Армавирский государственный педагогический университет, 2019. 308 с. Текст : электронный. URL: https://www.iprbookshop.ru/82448.html
- 9. Русин, Г. С. Привет, робот! Моя первая книга по робототехнике / Г. С. Русин, Е. В. Дубовик, Ю. А. Иркова. Санкт-Петербург : Наука и Техника, 2018. 304 с. Текст : электронный. URL: https://www.iprbookshop.ru/78099.html
- 10. Тарапата, В. В. Учимся вместе со Scratch. Программирование, игры, робототехника / В. В. Тарапата, Б. В. Прокофьев. Москва : Лаборатория знаний, 2019. 229 с. Текст : электронный. URL: https://www.iprbookshop.ru/89072.html
- 11. Филиппов, С. А. Уроки робототехники. Конструкция. Движение. Управление. 4-е изд. Москва : Лаборатория знаний, 2022. 191 с. —Текст : электронный. URL: https://www.iprbookshop.ru/120891.html

6.3. Ресурсы информационно-телекоммуникационной сети «Интернет»

1. http://www.fasi.gov.ru - Федеральное агентство по науке и образованию;

- 2. http://www.edu.ru - Федеральный портал «Российское образование»;
- 3. http://www.garant.ru - информационно-правовой портал «Гарант»
- 4. http://www.school.edu.ru - Российский общеобразовательный портал;
- http://www.openet.edu.ru Российский портал открытого образования; 5.
- http://www.ict.edu.ru портал по информационно-коммуникационным технологиям в 6. образовании;
- 7. http://pedagogic.ru - педагогическая библиотека;
- 8. http://www.pedpro.ru - журнал «Педагогика»;
- http://www.informika.ru/about/informatization_pub/about/276 научно-методический 9. журнал «Информатизация образования и науки»;
- http://www.hetoday.org журнал «Высшее образование сегодня». 10.
- http://www.znanie.org/ Общество «Знание» России 11.
- 12. http://www.gpntb.ru - Государственная публичная научно-техническая библиотека.
- 13. http://www.rsl.ru - Российская национальная библиотека.
- 14. http//www.gpntb.ru - Публичная электронная библиотека.
- 15. http://www.znanium.com/ - Электронно-библиотечная система
- http://www.biblioclub.ru/ Университетская библиотека онлайн 16
- http://www.elibrary.ru Научная электронная библиотека 17

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

1. Методические рекомендации по организации и выполнению самостоятельной работы студентов

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows

MicrosoftOffice

KasperskyEndpointSecurity

Информационные справочные системы:

Система ГАРАНТ

Система «КонсультантПлюс»

Профессиональные базы данных:

fgosvo.ru – Портал Федеральных государственных образовательных стандартов высшего образования

pravo.gov.ru - Официальный интернет-портал правовой информации

www.edu.ru – Федеральный портал Российское образование

Свободно распространяемое программное обеспечение, в том числе отечественного производства:

ОМС Плеер (для воспроизведения Электронных Учебных Модулей), 7-zip,

Google Chrome

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения занятий лекционного и семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные учебной мебелью, доской, демонстрационным оборудованием;
- помещения для самостоятельной работы, укомплектованные учебной мебелью, персональными компьютерами с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду МГОУ;
- помещения для хранения и профилактического обслуживания учебного оборудования, укомплектованные мебелью (шкафы/стеллажи), наборами демонстрационного оборудования и учебно-наглядными пособиями.