Документ подписан простой электронной подписью Информация о владельце:

Физико-математический факультет Кафедра общей физики

УТВЕРЖДЕН на заседании кафедры Протокол от «10» июня 2021 г. № 11 Зав. кафедрой /Барабанова Н.Н./

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине Специальный физический практикум

Направление подготовки **03.03.02 Физика**

Авторы-составители:

Васильчикова Е. Н., кандидат физико-математических наук, доцент, Барабанова Н. Н., кандидат физико-математических наук, доцент, Жачкин В. А., доктор физико-математических наук, профессор, Емельянов В. А., кандидат физико-математических наук, доцент, Емельянова Ю. А., ассистент кафедры общей физики.

Фонд оценочных средств дисциплины «Специальный физический практикум» составлен в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению 03.03.02 Физика, утвержденного приказом МИНОБРНАУКИ РОССИИ от 07.08.2020 г. № 891.

Дисциплина входит в обязательную часть Блока 1. «Дисциплины (модули)» и является обязательной для изучения. Год начала подготовки 2021

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Освоение дисциплины «Специальный физический практикум» позволяет сформировать у бакалавров следующие компетенции:

Код и наименование компетенции	Этапы формирования
ОПК-2 — «Способен проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальные данные»	2. Самостоятельная работа.

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оценивае	Уровень	Этапы	Описание	Критерии	Шкала
мые	сформиров	формирования	показателей	оцениван	оценив
компетен	анности			ия	ания
ции		1 5 5			11 10
ОПК-2	Пороговый	1. Работа на	знать методы	Посещени	41-60
		учебных	планирования и	e,	
		занятиях.	осуществления учебного	лаборатор	
		2.	эксперимента, оценки	ные	
		Самостоятельная	результатов	работы,	
		работа.	эксперимента,	домашнее	
			подготовки отчетных	задание,	
			материалов в рамках	решение	
			изучаемой дисциплины	задач,	
			при работе в группах;	доклад,	
			уметь грамотно	зачет	
			планировать и		
			осуществлять учебный		
			эксперимент, проводить		
			оценку его результатов,		
			подготавливать отчетные		
			материалы в рамках		
			изучаемой дисциплины		
			при работе в группах		
	Продвинут	1. Работа на	знать методы	Посещени	61-100
	ый	учебных	планирования и	e,	
		занятиях.	осуществления учебного	лаборатор	
		2.	эксперимента, оценки	ные	
		Самостоятельная	результатов	работы,	
		работа.	эксперимента,	домашнее	
			подготовки отчетных	задание,	
			материалов в рамках	решение	
			изучаемой дисциплины	задач,	
			при работе в группах;	доклад,	
			уметь грамотно	зачет	
			планировать и		
			осуществлять учебный		

эксперимент, проводить	
оценку его результатов,	
подготавливать отчетные	
материалы в рамках	
изучаемой дисциплины	
при работе в группах;	
владеть организационно-	
управленческими	
навыками при работе в	
научных группах и	
других малых	
коллективах	
исполнителей	

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерные вопросы для тестовых заданий

- 1. Кварцевую пластину, вырезанную параллельно оптической оси, поместили между двумя скрещенными николями. При повороте пластины на угол α интенсивность проходящего через систему света:
- 1) Не изменится
- 2) Равна нулю при $\alpha = n \cdot \pi/2$
- 3) Равна нулю при $\alpha = n \cdot \pi/4$
- 2. В интерферометре Фабри–Перо наблюдается система интерференционных полос. Номер интерференционного максимума:
- 1) Увеличивается с увеличением номера кольца
- 2) Уменьшается с увеличением номера кольца
- 3) Не изменяется
- 3. Дифракционная решетка имеет 100 штрихов. С ее помощью можно наблюдать отдельно две линии спектра с длинами волн $\lambda_1 = 560$ нм и $\lambda_2 = 560.8$ нм, начиная с максимума порядка:
- 1) 5
- 2) 7
- 3) 2

Примерные варианты лабораторных работ

Тема занятия	Ауд. занятия	Самостоятельная работа Вопросы к защите
Работа № 1. Эффект Фарадея.	Выполнение лабораторной работы	1. Что такое плоскость поляризации? 2. Оптическая активность: естественная и искусственная (примеры). 3. Эффект Фарадея, объяснение на основе электронной теории. 4. Физический смысл постоянной Верде. 5. Схема экспериментальной установки, устройство полутеневого анализатора.

Работа № 2. Исследование стоячих волн в двухпроводной линии.	Выполнение лабораторной работы	1.Телеграфные уравнения. 2.Стоячие волны в линии замкнутой, разомкнутой и замкнутой на волновое сопротивление. 3.Вывести расчетную формулу для
		волнового сопротивления двухпроводной линии.
Работа № 3. Дифракция света на ультразвуковых волнах.	Выполнение лабораторной	1.Дифракция света. Принцип Гюйгенса-Френеля.
The year space years boundary.	работы	2. Распространение света в неоднородной среде.
		3.От чего зависит радиус кривизны лучей в неоднородной среде?
		4.Дифракция Рамана-Ната и дифракция Брэгга.
		5. Сравнить дифракцию света на дифракционной решетке и на
		ультразвуке.

Примерные варианты задач к защите лабораторных работ

- 1. Определить постоянную Верде R для железа, если известно, что слой железа толщиной 0,001 см поворачивает плоскость поляризации на 130° в поле H=10000 Э при λ =589 нм.
- 2. Выразить постоянную Верде R через показатели преломления n+ и n- для право- и лево поляризованного по кругу света, проходящего вдоль линий магнитного поля.
- 3. В кювету, имеющую форму параллелепипеда, налит толуол, в котором возбуждаются ультразвуковые волны с помощью колебаний пластинки пьезокварца. Пластина кварца установлена параллельно боковым стенкам кюветы. Ультразвуковые волны, возбуждаемые пластинкой, отражаются от одной из боковых стенок кюветы. В результате в жидкости образуется стоячая ультразвуковая волна. Чему равен пространственный период изменения показателя преломления жидкости при наличии в ней стоячей ультразвуковой волны?
- 4. При освещении интерферометра Фабри-Перо расходящимся монохроматическим светом с длиной волны λ в фокальной плоскости линзы возникает интерференционная картина: система концентрических колец. Расстояние между отражающими поверхностями интерферометра равно d. Определить, как зависит от порядка интерференции: а) расположение колец, б) угловая ширина полос интерференции.

Примерные вопросы к зачету (7 семестр)

- 1. Эффект Фарадея.
- 2. Дифракция света на ультразвуке.
- 3. Дифракция рентгеновского излучения на кристаллической решетке. Формула Вульфа-Брэгга.

Примерные вопросы к зачету (8 семестр)

- 1. Волновое уравнение для поперечных волн в струне.
- 2. Бегущие и стоячие волны.
- 3. Затухание волн. Физический смысл коэффициента поглощения.
- 4. Поверхностные и объемные волны.
- 5. Методы определения скорости и коэффициента поглощения ультразвуковых волн в различных средах.

Примерные темы докладов

- 1. Отражение и преломление плоских электромагнитных волн. Формулы Френеля.
- 2. Температурные волны в твердых телах.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенний

Оценивание степени освоения обучающимися дисциплины осуществляется на основе «Положение о балльно-рейтинговой системе оценки успеваемости студентов МГОУ».

Сопоставимость рейтинговых показателей студента по разным дисциплинам и балльно-рейтинговой системы оценки успеваемости студентов обеспечивается принятием единого механизма оценки знаний студентов, выраженного в баллах, согласно которому 100 баллов — это полное усвоение знаний по учебной дисциплине, соответствующее требованиям учебной программы.

Максимальный результат, который может быть достигнут студентом по каждому из Блоков рейтинговой оценки — 100 баллов.

В зачетно-экзаменационную ведомость и зачетную книжку выставляются оценки по пятибалльной шкале и рейтинговые оценки в баллах.

При получении студентом на зачёте неудовлетворительной оценки в ведомость выставляется рейтинговая оценка в баллах (меньше 40 баллов), соответствующая фактическим знаниям (ответу) студента.

Критерии оценки знаний студентов в рамках каждой учебной дисциплины или групп дисциплин вырабатываются преподавателями согласованно на кафедрах университета исходя из требований образовательных стандартов.

Процедура оценивания знаний и умений состоит из следующий составных элементов:

- 1) учет посещаемости лекционных, практических и лабораторных занятий осуществляется по ведомости, представленной ниже в форме таблицы;
- 2) текущий контроль: выполнение домашней работы, контроль решения задач.

Московский государственный областной университет Ведомость учета посещения Физико-математический факультет

направление: 03.03.02 Физика
Дисциплина: Специальный физический практикум
Группа №
Преподаватель:

No	Фамилия И.О.		Посещение занятий							Итого
п/п	студента									
		1	2	3	4				18	
1.		+	-	+	-				+	61
2.		-	+	+	+				+	66

Московский государственный областной университет Ведомость учета посещения Физико-математический факультет

Направление: 03.03.02 Физі	ика
Дисциплина: Специальный	физический практикум
Группа №	

№	Фами						Подпис	Сумма	Общ	Ит	оговая	Подпи
Π /	ЛИЯ	Cvm	ма бап	пов п	<u> </u>	в семестре	Ь	баллов	ая	OI	ценка	СР
П	И.О.	CyM	ima Gan.	лов, п	аораппыл	весместре	препод	на зач.	сум			препо
							ав.	до 50	ма			давате
		Пос	Выпо	Вып	Презент	Практическ		баллов	балл	Ци	Проп	ля
		еще	лнени	олне	ации	ие задания			OB	фр	ись	
		ние	e	ние		до 10			ДО	a		
			лабор	докл	до 10	баллов			100			
			аторн	адов	баллов				балл			
		до	ых	до					OB			
		10	работ	10								
		балл	-	балл								
		OB	до 10	OB								
			балло									
			В									
1.												
2.												

Шкала и критерии оценивания посещаемости

Уровни оценивания	Критерии оценивания	Баллы
Высокий (отлично)	Если студент посетил 81-100% от всех занятий.	8-10
Оптимальный (хорошо)	Если студент посетил 61-80% от всех занятий.	5-7
<i>Удовлетворительный</i>	Если студент посетил 41-60% от всех занятий	2-4
Неудовлетворительный	Если студент посетил 0-40% от всех занятий	0-1

Шкала и критерии оценивания написания доклада

Уровни оценивания	Критерии оценивания	Баллы
Высокий (отлично)	Если студент отобразил в докладе 71-90% выбранной	8-10
Высокий (отлично)	темы.	
Оптимальный (хорошо)	Если студент отобразил в докладе 51-70% выбранной	5-7
Оптимальный (хорошо)	темы	
Удовлетворительный	Если студент отобразил в докладе 31-50% выбранной	2-4
у оовлетворительный	темы	
Неудовлетворительный	Если студент отобразил в докладе 0-30% выбранной	0-1
11е у о о влет в орительный	темы	

Шкала и критерии оценивания решения задач

Уровни оценивания	Критерии оценивания	Баллы
Высокий (отлично)	Если студент решил 71-90% от всех задач	8-10
Оптимальный (хорошо)	Если студент решил 51-70% от всех задач	5-7
Удовлетворительный	Если студент решил 31-50% от всех задач	2-4
Неудовлетворительный	Если студент решил 0-30% от всех задач	0-1

Уровни оценивания	Критерии оценивания	Баллы
Высокий (отлично)	Если студент отобразил в презентации 71-90%	8-10
	выбранной темы.	
Оптимальный (хорошо)	Если студент отобразил в презентации 51-70%	5-7
	выбранной темы	
<i>Удовлетворительный</i>	Если студент отобразил в презентации 31-50%	2-4
	выбранной темы	
Неудовлетворительный	Если студент отобразил в презентации 0-30%	0-1
	выбранной темы	

Структура оценивания ответа на зачете

Уровни оценивания	Критерии оценивания	Баллы
Высокий	Свободное владение основными терминами и понятиями курса; последовательное и логичное изложение материала курса; законченные выводы и обобщения по теме вопросов; исчерпывающие ответы на вопросы при сдаче зачета. Полностью выполнены и защищены лабораторные работы.	37–50
Оптимальный	Знание основных терминов и понятий курса; последовательное изложение материала курса; умение формулировать некоторые обобщения по теме вопросов; достаточно полные ответы на вопросы при сдаче зачета. Полностью выполнены и защищены лабораторные работы.	23–36
Удовлетворительный	Удовлетворительное знание основных терминов и понятий курса; удовлетворительное знание и владение методами и средствами решения задач; недостаточно последовательное изложение материала курса; умение формулировать отдельные выводы и обобщения по теме вопросов. Выполнено и защищено не менее 75 % лабораторных работ.	9–22
Неудовлетворительный	Ответ, не соответствующий вышеуказанным критериям выставления оценок.	0–8

Шкала оценивания зачета

Оценка	Балл
Зачтено	41-100
Не зачтено	0-40