Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Дата подписания: 24.10.2024 14:21:41

Уникальный программный ключ:

6b5279da4e034bff679172803da5b7b55 МИНИИТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ

Государственное образовательное учреждение высшего образования Московской области МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ (МГОУ)

Физико-математический факультет Кафедра общей физики Согласовано управлением организации Одобрено учесто-методическим советом и контроля качества образовательной деятельности Протокол « « 10 » 06 Председатель Начальник управления /М.А. Миненкова/

Рабочая программа дисциплины

Физика

Направление подготовки 44.03.05 Педагогическое образование

Профиль:

Математика и информатика

Квалификация Бакалавр

Форма обучения Очная

Согласовано учебно-методической комиссией физико-математического факультета:

Протокол « 21 » 05 2020 г.№ 10

Председатель УМКом Жи

/ Н.Н.Барабанова/

Рекомендовано кафедрой общей физики

Зав.кафедрой

/Барабанова Н.Н. /

Мытищи 2020

Автор-составитель:

Барабанова Наталья Николаевна, к.ф.-м.н., доцент кафедры общей физики Васильчикова Елена Николаевна, к.ф.-м.н., доцент кафедры общей физики Геворкян Эдвард Вигенович, д.ф.-м.н., профессор кафедры общей физики Емельянов Владимир Анатольевич, к.ф.-м.н., доцент кафедры общей физики Жачкин Владимир Арефьевич, д.ф.-м.н., профессор кафедры общей физики

Рабочая программа дисциплины «Физика» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 44.03.05 Педагогическое образование профиль «Математика и информатика», утвержденного приказом МИНОБРНАУКИ РОСИИ от 22.02.2018 г. № 125.

Дисциплина входит в обязательную часть блока Б1 «Дисциплины (модули) и является обязательной для изучения.

Год начала подготовки 2020

СОДЕРЖАНИЕ

1.	Планируемые результаты обучения
	1.1. Цель и задачи дисциплины
	1.2. Планируемые результаты обучения
2.	Место дисциплины в структуре образовательной программы
3.	Объем и содержание дисциплины5
	3.1. Объем дисциплины
	3.2. Содержание дисциплины
4 5	Учебно-методическое обеспечение самостоятельной работы обучающихся
6	различных этапах их формирования, описание шкал оценивания
	Методические указания по освоению дисциплины
7 8	Информационные технологии для осуществления образовательного процесса по дисциплине
9	Материально-техническое обеспечение дисциплины

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цель и задачи дисциплины

Цель дисциплины:

- формирование систематизированных знаний в области общей и экспериментальной физики; освоение современных концепций, теорий, законов и методов в области физики,
- формирование и совершенствование у студентов навыков педагогической поддержки обучающихся физике.

Задачи дисциплины:

• формирование единого подхода к анализу процессов различной физической природы на основе обобщения информации, полученной в ходе изучения различных разделов общей физики.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

ОПК-8 - Способен осуществлять педагогическую деятельность на основе специальных научных знаний.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Учебная дисциплина «Физика» относится к обязательной части Блока 1.

Для освоения дисциплины «Физика» используются знания, умения и виды деятельности, сформированные в процессе изучения следующих дисциплин: «Введение в математику», «Математический анализ». Освоение данной дисциплины является необходимой основой для изучения такой дисциплины, как «Естественнонаучная картина мира».

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Таблица 1

Показатель объема дисциплины	Форма обучения
	Очная
Объем дисциплины в зачетных единицах	9
Объем дисциплины в часах	324
Контактная работа:	162
Лекции	72
Лабораторные занятия	90
Контактные часы на промежуточную аттестацию:	4,6
Экзамен	0,6

Предэкзаменационная консультация	4
Самостоятельная работа	138
Контроль	19,4

Формой промежуточной аттестации являются экзамены в 7 и 8 семестрах.

3.2. Содержание дисциплины (очная форма обучения)

Таблица 2

Taomi		аолица 2
	Количество часов	
Наименование разделов (тем)		Лаборато
дисциплины с кратким содержанием	Лекции	рные
		занятия
Раздел 1. Механика. (7 семестр)		
Тема 1. Механика.	2	2
Предмет механики. Основные физические модели: частица		
(материальная точка), система частиц, абсолютно твердое тело,		
сплошная среда.		
Кинематика поступательного движения. Система отсчета. Нормальное		
и тангенциальное ускорения. Уравнения поступательного движения.		
Элементы кинематики вращательного движения. Движение частицы		
по окружности. Уравнения вращательного движения.		
Тема 2. Динамика поступательного движения материальной	2	6
точки и твердого тела.		
Первый закон Ньютона. Понятие инерциальной системы отсчета.		
Второй закон Ньютона. Уравнение движения.		
Количество движения. Импульс силы. Закон сохранения количества		
движения в изолированной системе.		
Движение центра масс системы материальных точек.		
Принцип реактивного движения. Движение с переменной массой.		
Уравнение Мещерского.		
Тема 3. Работа и мощность.	2	4
Работа переменной силы. Работа внешних сил при растяжении		
пружины.		
Кинетическая энергия. Консервативные и неконсервативные силы.		
Потенциальная энергия и энергия взаимодействия.		
Закон сохранения энергии в механике.		

Тема 4. Кинематика и динамика вращательного движения тел.	2	4
Момент силы и момент импульса механической системы. Закон		
сохранения момента импульса.		
Момент инерции тела относительно оси вращения. Уравнение		
динамики вращательного движения твердого тела относительно		
неподвижной оси.		
Энергия вращательного движения.		
Тема 5. Закон всемирного тяготения.	2	2
Гравитационное поле. Напряженность поля и его потенциал.		
Космические скорости. Понятие о невесомости.		
Тема 6. Элементы гидростатики.	2	4
Кинематическое описание движения жидкости. Уравнения движения и		
равновесия жидкости. Идеальная жидкость. Стационарное течение		
идеальной жидкости. Уравнение Бернулли.		
Вязкая жидкость. Силы внутреннего трения. Стационарное течение		
вязкой жидкости. Понятие о турбулентности.		

Раздел 2. Колебания и волны.		
Тема 7. Гармонические механические колебания.	4	6
Основные характеристики колебательного движения: амплитуда, фаза,	7	U
частота, период. Дифференциальное уравнение гармонических		
колебаний. Энергия гармонических колебаний.		
Примеры гармонических осцилляторов: пружинный, физический и		
математический маятники.		
Свободные затухающие колебания. Дифференциальное уравнение		
затухающих колебаний и его решение.		
Вынужденные колебания гармонического осциллятора.		
Дифференциальное уравнение вынужденных колебаний и его		
решение.		
Тема 8. Волны.	2	4
Поперечные и продольные волны. Уравнение плоской волны.		
Скорость распространения волн в среде. Волновое уравнение. Энергия		
волны. Интерференция волн. Стоячие волны.		
Раздел 3. Молекулярная физика и термодинамика.		
Тема 9. Молекулярная физика.	4	4
Молекулярно-кинетическая теория идеального газа.		
Макроскопические параметры как средние значения. Модель		
идеального газа.		
Основное уравнение кинетической теории идеального газа.		
Средняя кинетическая энергия молекул. Молекулярно-кинетическое		
толкование термодинамической температуры.		
Уравнение состояния идеального газа. Уравнение Клапейрона-		
Менделеева. Законы идеального газа для изо-процессов.		

Тема 10. Основные положения молекулярно-кинетической	4	4
теории. Внутренняя энергия идеального газа. Число степеней свободы		
молекулы. Закон равномерного распределения энергии по степеням		
свободы молекул.		
Распределение молекул идеального газа по скоростям. Закон		
Максвелла.		
Барометрическая формула. Распределение Больцмана.		
Среднее число столкновений и средняя длина свободного пробега		
молекулы. Эффективный диаметр молекулы.		
Явления переноса в термодинамически неравновесных системах.		
Опытные законы диффузии и теплопроводности.		
Тема 11. Термодинамика.	4	4
Количество теплоты. 1-е начало термодинамики. Внутренняя		
энергия и работа газа при изменении его объема.		
Теплоемкость идеального газа. Зависимость теплоемкости		
идеального газа от вида процесса.		
Применение 1-го начала термодинамики к изопроцессам, к		
адиабатному процессу.		
Обратимые и необратимые процессы. Круговой процесс (цикл).		
Тепловые двигатели и холодильные машины. Второе начало		
термодинамики.		
Цикл Карно и его КПД для идеального газа.		
Энтропия идеального газа.		

		ı
Раздел 4. Реальные газы. Жидкости. Твердые тела.		
Тема 12. Реальные газы. Уравнение Ван-дер-Ваальса.	2	4
Теоретические и экспериментальные изотермы реальных газов.		
Свойства насыщенных и ненасыщенных паров. Сжижение газов.		
Тема 13. Жидкости.	2	4
Структура жидкостей. Кипение, испарение и конденсация. Теплота		
парообразования. Влажность.		
Поверхностное натяжение. Давление Лапласа. Капиллярность.		
Тема 14. Твердые тела.	2	4
Силы межмолекулярного взаимодействия.		
Структура кристаллических и аморфных тел.		
Теплоемкость твердых тел.		
Плавление и отвердевание. Удельная теплота плавления.		
Фазовые диаграммы. Тройная точка.		
Раздел 5. Электричество. (8 семестр)		
Тема 15. Электростатика.	2	2
Электрический заряд. Закон Кулона. Электрическое поле.		
Напряженность электрического поля в вакууме.		
Поток вектора напряженности электрического поля. Теорема Гаусса		
для электрического поля. Применение теоремы Гаусса к расчету		
электрического поля.		
Циркуляция вектора напряженности электрического поля. Потенциал		
электрического поля и его связь с напряженностью.		
Движение заряженных частиц в электрическом поле.		

Тема 16. Проводники и диэлектрики в электрическом поле.	2	2
Электрическая емкость проводника. Конденсаторы. Емкость плоского		
конденсатора. Параллельное и последовательное соединение		
конденсаторов.		
Энергия заряженных проводников и заряженного конденсатора.		
Плотность энергии электростатического поля.		
Тема 17. Постоянный электрический ток.	2	2
Сила тока. Плотность тока. Электродвижущая сила. Закон Ома для		
участка цепи. Закон Ома в дифференциальной форме.		
Зависимость сопротивления от параметров проводника и		
температуры. Способы соединения сопротивлений. Закон Ома для		
замкнутой цепи.		
Работа и мощность электрического тока. Закон Джоуля-Ленца. КПД		
источника тока.		
Разветвленные электрические цепи. Правила Кирхгофа.		
Тема 18. Электрический ток в металлах.	2	2
Элементарная классическая теория металлов. Удельная проводимость		
металлов. Законы Ома и Джоуля-Ленца в дифференциальной форме.		
Полупроводники. Собственная и примесная проводимость п/п. Зонная		
модель проводимости. Полупроводниковый диод.		
Электрический ток в вакууме. Работа выхода электронов из металла.		
Термоэлектронная эмиссия.		

Раздел 6. Магнетизм.		
· · ·	1	1
Тема 19. Магнитное поле в вакууме.	4	4
Закон Био-Савара-Лапласа и его применение к расчету магнитного		
поля. Теорема Ампера.		
Действие магнитного поля на движущийся заряд и на проводник с		
током. Сила Лоренца. Сила Ампера.		
Напряженность магнитного поля в веществе. Магнитная		
проницаемость. Магнетики. Диа-, пара- и ферромагнетизм.		
Тема 20. Электромагнитная индукция.	4	4
Закон Фарадея. Теорема Гаусса для магнитного поля в вакууме.		
Уравнения Максвелла. Уравнения Максвелла для электромагнитного		
поля. Вихревое электрическое поле. Ток смещения.		
Электромагнитные волны. Волновое уравнение.		
Раздел 7. Переменный электрический ток.		
Тема 21. Переменный электрический ток.	2	2
Сопротивление, индуктивность и емкость в цепи переменного тока.		
Раздел 8. Оптика.		
Тема 22. Геометрическая оптика.	2	2
Основные законы оптики. Принцип Ферма. Скорость света.		
Преломление света на сферической поверхности. Формула тонкой		
линзы. Оптические приборы: лупа, микроскоп, телескоп. Увеличение		
оптических приборов.		

Тема 23. Волновая оптика.	4	4
Интерференция света. Кольца Ньютона.	-	
Дифракция света. Принцип Гюйгенса-Френеля. Дифракционная		
решетка.		
Естественный и поляризованный свет. Закон Малюса. Двойное		
лучепреломление. Вращение плоскости поляризации.		
Тема 24. Квантовая оптика.	4	4
Тепловое излучение. Тепловое излучение.		
Законы Кирхгоффа, Стефана-Больцмана, Вина. Формула Планка.		
Квантовая теория излучения. Фотоэффект. Законы внешнего		
фотоэффекта. Эффект Комптона.		
Раздел 9. Атомная и квантовая физика.		
Тема 25. Атомная физика.	2	2
Закономерности в спектре атома водорода. Модель атома Томсона.		
Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель		
атома.		
Постулаты Бора. Теория атома водорода по Бору. Спектры атома		
водорода. Опыт Франка и Герца.		
Тема 26. Квантовая физика.	2	2
Корпускулярно-волновой дуализм свойств материи. Гипотеза Луи де		
Бройля. Формула де Бройля. Дифракция электронов.		
Уравнение Шредингера.		
Соотношение неопределенностей Гейзенберга.		
Квантовые числа. Опыт Штерна и Герлаха. Спин электрона.		
Спиновое квантовое число. Принцип Паули.		
Строение электронных оболочек. Характеристическое рентгеновское		
излучение.		

Раздел 10. Ядерная физика и элементарные частицы.		
Тема 27. Ядерная физика.	2	2
Строение ядра. Нуклоны. Изотопы. Открытие протона и нейтрона.		
Радиоактивность. Альфа- и бета-излучение.		
Закон радиоактивного распада. Период полураспада.		
Радиоуглеродный метод датировки.		
Дефект масс. Энергия связи. Деление ядер.		
Тема 28. Элементарные частицы.	2	2
Элементарные частицы и их свойства. Стандартная модель физики		
частиц.		
ВСЕГО	72	90

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа студентов

Важнейшую роль в освоении дисциплин профессиональной подготовки играет самостоятельная работа студентов. Самостоятельная работа способствует воспитанию специалиста, ответственно выполняющего на практике свои профессиональные обязанности. В образовательном процессе можно выделить следующие основные формы самостоятельной работы студента:

- Подготовка к лекциям. Эффективность лекционных занятий в значительной степени определяется степенью подготовленности студента к восприятию учебного материала. Поэтому перед лекцией следует познакомиться с лекционным материалом, изложенным в учебниках и электронных источниках; с основными категориями и понятиями, моделями и методами их исследования, которые будут использованы на лекции и подготовить вопросы к лектору.
- Подготовка к лабораторным занятиям. В процессе подготовки к лабораторным занятиям студент должен освоить соответствующий учебный материал по предложенной теме, подготовить на базе методического пособия по лабораторным работам проект отчета по лабораторной работе, включающий краткую теоретическую часть, и все необходимые таблицы для экспериментальной части. По результатам проведенной лабораторной работы следует оформить отчет по заданной форме представления результатов с необходимыми выводами.
- Подготовка к практическим занятиям. В процессе подготовки к практическим занятиям студент должен освоить соответствующий учебный материал по предложенной теме. По результатам проведенной работы следует оформить отчет по заданной форме.
- Подготовка к зачету и экзамену. В процессе подготовки к зачету и экзамену студент осуществляет осмысление и приведение в систему знаний, полученных на лекционных, лабораторных и практических занятиях; знакомится с вопросами для самоконтроля, выделяет проблемные вопросы и обращается к преподавателю за соответствующей консультацией.

Организация самостоятельной работы студентов

Таблица 3

Темы для самостоят ельного изучения	Изучаемые вопросы	Коли честв о часов	Формы самостояте льной работы	Методическое обеспечение	Формы отчетности
Основные законы движения в механике	Базовые принципы формулировк и основных законов движения в механике	10	Проанализи ровать материал по изучаемым вопросам	Трофимова Т.И. Курс физики: учеб. пособие для вузов / Т.И.Трофимова. — 8-е изд. — М.: Высш. шк., 2004. — 544с. Богданов Д.Л. Лабораторный практикум. (Для студентов нефизических специальностей). Механика. Молекулярная физика. Электричество. / Д.Л.Богданов, В.А.Жачкин. Учебное пособие М.: МГОУ, 2014. — 64с.	Конспект, сообщение
Законы сохранения в механике.	Базовые принципы формулировк и основных законов	10	Проанализи ровать материал по изучаемым вопросам	Трофимова Т.И. Курс физики: учеб. пособие для вузов / Т.И.Трофимова. – 8-е изд. – М.: Высш.шк., 2004. – 544с.	Конспект, сообщение

Уравнения	Базовые Базовые	10	Проанализи	Богданов Д.Л. Лабораторный практикум. (Для студентов нефизических специальностей). Механика. Молекулярная физика. Электричество. / Д.Л.Богданов, В.А.Жачкин. Учебное пособие М.: МГОУ, 2014. – 64с. Трофимова Т.И. Курс	Конспект,
движения и равновесия жидкости.	принципы формулировк и основных законов движения жидкости		ровать материал по изучаемым вопросам	физики: учеб. пособие для вузов / Т.И.Трофимова. — 8-е изд. — М.: Высш.шк., 2004. — 544с. Богданов Д.Л. Лабораторный практикум. (Для студентов нефизических специальностей). Механика. Молекулярная физика. Электричество. / Д.Л.Богданов, В.А.Жачкин. Учебное пособие М.: МГОУ, 2014. — 64с.	сообщение
Гармониче ские механичес кие колебания и волны	Базовые принципы формулировк и основных законов колебательно го движения	12	Проанали- зировать материал по изучаемым вопросам	Трофимова Т.И. Курс физики: учеб. пособие для вузов / Т.И.Трофимова. — 8-е изд. — М.: Высш.шк., 2004. — 544с. Богданов Д.Л. Лабораторный практикум. (Для студентов нефизических специальностей). Механика. Молекулярная физика. Электричество. / Д.Л.Богданов, В.А.Жачкин. Учебное пособие М.: МГОУ, 2014. — 64с.	Конспект, сообщение
Законы идеального газа.	Базовые принципы формулировк и основных законов молекулярно й физики и термодинами ки	10	Проанализи ровать материал по изучаемым вопросам	Трофимова Т.И. Курс физики: учеб. пособие для вузов / Т.И.Трофимова. — 8-е изд. — М.: Высш.шк., 2004. — 544с. Богданов Д.Л. Лабораторный практикум. (Для студентов нефизических специальностей). Механика. Молекулярная физика. Электричество. / Д.Л.Богданов, В.А.Жачкин. Учебное пособие М.: МГОУ, 2014. — 64с.	Конспект, сообщение
Электроста тика.	Базовые принципы	12	Проанализи ровать	Трофимова Т.И. Курс физики: учеб. пособие для	Конспект, сообщение

Постоянны й электричес кий ток	формулировк и основных законов взаимодейств ия зарядов и их движения		материал по изучаемым вопросам	вузов / Т.И.Трофимова. — 8-е изд. — М.: Высш.шк., 2004. — 544с. Богданов Д.Л. Лабораторный практикум. (Для студентов нефизических специальностей). Электромагнетизм. Оптика. Атомная физика. / Д.Л.Богданов, В.А.Жачкин. Учебное пособие М.: МГОУ, 2014. — 62с.	
Магнитное поле. Электрома гнитная индукция.	Базовые принципы формулировк и основных законов взаимодейств ия движущихся зарядов	10	Проанализи ровать материал по изучаемым вопросам	Трофимова Т.И. Курс физики: учеб. пособие для вузов / Т.И.Трофимова. — 8-е изд. — М.: Высш.шк., 2004. — 544с. Трофимова Т.И. Сборник задач по курсу физики с решениями: учеб. пособие для вузов / Т.И.Трофимова. — 8-е изд. — М.: Высш. шк., 2007. — 591с. Сахаров Д.И. Сборник задач по физике: для вузов / Д.И.Сахаров. — 13-е изд. — М.: Оникс 21 век, 2003. — 400с.	Конспект, сообщение
Уравнения Максвелла. Электрома гнитные волны.	Базовые принципы формулировк и основных законов электромагни тного поля	10	Проанализи ровать материал по изучаемым вопросам	Трофимова Т.И. Курс физики: учеб. пособие для вузов / Т.И.Трофимова. — 8-е изд. — М.: Высш. шк., 2004. — 544с. Трофимова Т.И. Сборник задач по курсу физики с решениями: учеб. пособие для вузов / Т.И.Трофимова. — 8-е изд. — М.: Высш.шк., 2007. — 591с. Сахаров Д.И. Сборник задач по физике: для вузов / Д.И.Сахаров. — 13-е изд. — М.: Оникс 21 век, 2003. — 400с.	Конспект, сообщение
Волновая оптика	Базовые принципы формулировк и основных законов волновой теории излучения.	12	Проанализи ровать материал по изучаемым вопросам	Трофимова Т.И. Курс физики: учеб. пособие для вузов / Т.И.Трофимова. — 8-е изд. — М.: Высш.шк., 2004. — 544с. Трофимова Т.И. Сборник задач по курсу физики с решениями: учеб. пособие для вузов / Т.И.Трофимова. — 8-е изд. — М.: Высш.шк., 2007. — 591с. Сахаров Д.И. Сборник задач	Конспект, сообщение

				по физике: для вузов /	
				Д.И.Сахаров. – 13-е изд. – M.:	
				Оникс 21 век, 2003. – 400с.	
Квантовая оптика	Базовые принципы формулировк и основных законов квантовой теории излучения.	12	Проанализи ровать материал по изучаемым вопросам	Трофимова Т.И. Курс физики: учеб. пособие для вузов / Т.И.Трофимова. — 8-е изд. — М.: Высш.шк., 2004. — 544с. Трофимова Т.И. Сборник задач по курсу физики с решениями: учеб. пособие для вузов / Т.И.Трофимова. — 8-е изд. — М.: Высш.шк., 2007. — 591с. Сахаров Д.И. Сборник задач по физике: для вузов / Д.И.Сахаров. — 13-е изд. — М.:	Конспект, сообщение
				Оникс 21 век, 2003. – 400с.	
Атомная физика	Базовые принципы формулировк и основных законов ядерной модели атома	10	Проанализи ровать материал по изучаемым вопросам	Трофимова Т.И. Курс физики: учеб. пособие для вузов / Т.И.Трофимова. — 8-е изд. — М.: Высш.шк., 2004. — 544с. Трофимова Т.И. Сборник задач по курсу физики с	Конспект, сообщение
				решениями: учеб. пособие для вузов / Т.И.Трофимова. – 8-е изд. – М.: Высш.шк., 2007. – 591с.	
				Сахаров Д.И. Сборник задач по физике: для вузов / Д.И.Сахаров. – 13-е изд. – М.: Оникс 21 век, 2003. – 400с.	
Квантовая физика	Корпускуляр но-волновой дуализм свойств материи.	10	Проанализи ровать материал по изучаемым вопросам	Трофимова Т.И. Курс физики: учеб. пособие для вузов / Т.И.Трофимова. — 8-е изд. — М.: Высш.шк., 2004. — 544с.	Конспект, сообщение
				Трофимова Т.И. Сборник задач по курсу физики с решениями: учеб. пособие для вузов / Т.И.Трофимова. – 8-е изд. – М.: Высш.шк., 2007. – 591с.	
				Сахаров Д.И. Сборник задач по физике: для вузов / Д.И.Сахаров. – 13-е изд. – М.: Оникс 21 век, 2003. – 400с.	
Элементы физики атомного ядра	Базовые принципы строения и свойств атомных ядер и	10	Проанализи ровать материал по изучаемым вопросам	Трофимова Т.И. Курс физики: учеб. пособие для вузов / Т.И.Трофимова. — 8-е изд. — М.: Высш.шк., 2004. — 544с.	Конспект, сообщение
				Трофимова Т.И. Сборник	

	элементарны		задач по курсу физики с	
	х частиц.		решениями: учеб. пособие	
			для вузов / Т.И.Трофимова. –	
			8-е изд. – М.: Высш.шк.,	
			2007. – 591c.	
			Сахаров Д.И. Сборник задач	
			по физике: для вузов /	
			Д.И.Cахаров. – 13-е изд. – M.:	
			Оникс 21 век, 2003. – 400с.	
Итого:		138		

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Таблица4

Код и наименование компетенции	Этапы формирования
ОПК-8 - Способен осуществлять	1. Работа на учебных занятиях.
педагогическую деятельность на основе	2. Самостоятельная работа.
специальных научных знаний	

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Таблица 5

Оцениваем ые компетенц ии	Уровен ь сформи рованн ости	Этапы формирования	Описание показателей	Критерии оценивани я	Шкала оцениван ия
ОПК-8	Порогов ый	1. Работа на учебных занятиях. 2. Самостоятельная работа.	Знает: - характеристику личностных, мета предметных и предметных результатов образовательной деятельности в контексте в предметной области Умеет: - оказывать адресную педагогическую помощь и поддержку обучающимся, в зависимости от их способностей, образовательных возможностей и потребностей Владеет: - способностью и опытом применения в предметной области различных способов оказания адресной педагогической помощи	Посещение, конспект, сообщение, лабораторн ые работы, решение задач, контрольны е работы, экзамен.	41-60

П	1. Работа на	Знает:	П	c1 100
Продви			Посещение,	61-100
нутый	учебных занятиях.	- характеристику личностных,	конспект,	
	2. Самостоятельная	мета предметных и предметных результатов образовательной	сообщение,	
	работа.		лабораторн	
		деятельности в контексте в	ые работы,	
		предметной области; способы	-	
		оказания индивидуальной	решение	
		педагогической помощи и	задач,	
		поддержки обучающимся в	контрольны	
		зависимости от их	е работы,	
		способностей, образовательных	экзамен.	
		возможностей и потребностей.	JR3amen.	
		Умеет:		
		- оказывать адресную		
		педагогическую помощь и		
		поддержку обучающимся, в		
		зависимости от их		
		способностей, образовательных		
		возможностей и потребностей,		
		в процессе достижения		
		метапредметных, предметных и		
		личностных результатов.		
		Владеет:		
		- способностью и опытом		
		применения в предметной		
		области различных способов		
		оказания адресной		
		педагогической помощи и		
		поддержки обучающимся в		
		зависимости от их		
		способностей, образовательных		
		возможностей и потребностей.		

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

5.3.1. Контрольные варианты для проведения текущего контроля и промежуточной аттестации по итогам освоения дисциплины

Вариант 1

- 1. Сплошной цилиндр соскальзывает без вращения с наклонной плоскости высотой h = I м, а затем скатывается с той же наклонной плоскости. Определить линейные скорости центра тяжести цилиндра в конце пути для обоих случаев. Трением пренебречь.
- 2. 12 г газа занимают объем $V_1 = 4 \cdot 10^{-3}$ м³ при температуре $t_1 = 7$ °C. После нагревания газа при постоянном давлении его плотность стала равна $\rho = 6 \cdot 10^{-4}$ г/см³. До какой температуры нагрели газ?
- 3. Электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобрел скорость V = 10⁶ м/с. Расстояние между пластинами d = 20мм. Определить: а) разность потенциалов между пластинами; б) напряженность электрического поля внутри конденсатора.

Вариант 2

- 1. Маховик в форме диска массой m=200 кг и радиусом r=80 см свободно вращается с частотой n=360 об/мин. Предоставленный самому себе маховик останавливается под действием сил трения. Вычислить работу A сил трения.
- 2. Определить суммарную кинетическую энергию всех молекул водорода и их среднюю квадратичную скорость $\langle v_{\text{кв}} \rangle$, если газ занимает объем V = 4 л и находится под давлением p = 1 МПа. Масса водорода m = 3 г.
- 3. Два тонких бесконечно длинных стержня, расположенных на расстоянии a=0,2 м один от другого, несут одинаковые равномерно распределенные заряды с линейной плотностью $\tau=5$ мКл/м. Определить напряженность электрического поля E в точке M, одинаково удаленной от стержней на расстояние a.

Вариант 3

- 1. Релятивистский импульс р частицы равен $0.5 m_o \cdot c$, где m_o масса покоя частицы. Определить скорость частицы в долях от скорости света $\beta = v/c$.
- 2. Двухатомный газ под давлением $300 \, \mathrm{k\Pi a}$ и при температуре $t = 27 \, ^{\circ}\mathrm{C}$ занимает объем V = 50 л. Определить теплоемкость этого газа при постоянном объеме и постоянном давлении.
- 3. Бесконечно длинный прямой тонкий стержень заряжен однородно с линейной плотностью τ = 5 мКл/м. Используя теорему Остроградского-Гаусса, найти зависимость напряженности электрического поля E(r) от расстояния до стержня r.

Вариант 4

- 1. Вычислить работу A, совершаемую равномерно возрастающей силой F при перемещении тела массы m=1 кг на расстояние s=10 м, если величина силы F изменяется от нуля в начале пути до 60 Н в конце пути.
- 2. При изотермическом расширении азота массой 140 г при температуре 300 К совершена работа 12,5 кДж. Найти: 1) во сколько раз изменился объем газа; 2) на сколько изменилась внутренняя энергия газа; 3) теплоту, полученную газом. Начертить диаграмму изопроцесса.
- 3. Электрон, имеющий скорость $v=2\cdot 10^5$ м/с, влетел в однородное электрическое поле ускорителя против силовых линий. Найти, какую скорость приобретет электрон, пройдя разность потенциалов U=20 кВ.

Вариант 5

- 1. Материальная точка массой m=5 г совершает гармонические колебания, описываемые уравнением $x=A\sin\omega t$, где A=10 см, $\omega=\pi/4$ с⁻¹. Вычислить величину возвращающей силы F и полную энергию материальной точки через 2 секунды после начала колебаний.
- 2. Одноатомный газ совершает цикл Карно. Нагреватель передал газу теплоту $Q_1 = 50 \, \text{кДж}$, в результате чего совершена работа $A = 10 \, \text{кДж}$. Определить, во сколько раз увеличится давление газа при адиабатическом сжатии.

3. Э.д.с. источника тока $\varepsilon = 110$ B, его внутреннее сопротивление r = 2 Ом. К источнику подключен нагревательный элемент, потребляющий мощность N = 2000 Вт. Определить силу тока I в цепи, напряжение U, под которым находится нагревательный элемент, и его сопротивление R.

Вариант 6

- 1. Протон, прошедший ускоряющую разность потенциалов U=600 В, влетел в однородное магнитное поле с индукцией B=0,3 Тл и начал двигаться по окружности. Вычислить радиус окружности.
- 2. По катушке, индуктивность которой L=0,03 мГн течет ток силой I=0,6 А. При выключении тока, он изменяется практически до нуля за время Δt =0,00012 с. Определить среднее значение величины э.д.с. самоиндукции, возникающей в контуре.
- 3. Уравнение изменения со временем разности потенциалов на обкладках конденсатора в колебательном контуре дано в виде $U = 50\cos 10^4 \pi t$ Ёмкость конденсатора 0,1 мкФ. Найти длину волны, соответствующую этому контуру.

Вариант 7

- 1. Определить частоту обращения электрона по круговой орбите в магнитном поле, магнитная индукция которого $B=0,2\,\mathrm{Tn}$.
- 2. Индуктивность катушки L=0,002 Гн. Ток с частотой ν =50 Гц, протекающий по катушке, изменяется по синусоидальному закону. Чему равно среднее значение ЭДС самоиндукции, возникающей за интервал времени Δt , в течение которого ток в катушке изменяется от минимального до максимального значения? Амплитудное значение силы тока I_0 =10 А.
- 3. Индуктивность колебательного контура L=0,5 мГн. Какова должна быть емкость контура, чтобы он резонировал на длину волны λ =300 м? Вариант 8
- 1. Электрон движется в однородном магнитном поле с индукцией B=0,1 Тл пер пендикулярно линиям поля. Определить силу F, действующую на электрон со стороны поля, если радиус кривизны траектории r=0,5 см.
- 2. Соленоид сечением S=5см 2 содержит N=1200. Индукция магнитного поля B внутри соленоида при токе I=2 А равна 0,01 Тл. Определить индуктивность L соленоида.
- 3. Какую индуктивность надо включить в колебательный контур, чтобы при емкости 2 мкФ получить звуковую частоту 1000 Гц.

Вариант 9

- 1. Определить силу Лоренца, действующую на электрон, влетевший под углом α =30° в магнитное поле, индукция которого B=0,2 Тл. Скорость электрона v=4·106м/с.
- 2. Рамка, площадь которой 16 см², вращается в однородном магнитном поле, делая 2 об/с. Ось вращения лежит в плоскости рамки и

- пер пендикулярна линиям индукции. Напряженность магнитного поля $H=7,96\cdot10^4$ А/м. Найти наибольшее значение потока магнитной индукции.
- 3. Уравнение изменения со временем разности потенциалов на обкладках конденсатора в колебательном контуре дано в виде $U = 50\cos 10^4 \pi t$ Ёмкость конденсатора 0,1 мкФ. Найти период колебаний.

Вариант 10

- 1. Вычислить радиус дуги окружности, которую описывает протон в магнитном поле с индукцией $B=1,5\cdot10^{-2}$ Тл, если скорость протона $v=2\cdot10^6$ м/с.
- 2. Прямой проводник длиной l=40 см движется в однородном магнитном поле со скоростью v=5 м/с перпендикулярно к линиям индукции. Разность потенциалов между концами проводника U=0,6 В. Вычислить индукцию B магнитного поля.
- 3. Индуктивность колебательного контура L=0,5 м Γ н. Какова должна быть емкость контура, чтобы он резонировал на длину волны λ =300 м?

5.3.2. Тематика лабораторных работ

Механика

- №3. Определение скорости полета пули при помощи баллистического маятника.
- №4. Проверка основного закона динамики для вращающихся тел.
- №5. Изучение физического маятника.
- №8. Определение коэффициента внутреннего трения жидкости по методу Стокса.
- №11А. Изучение затухающих колебаний.
- №11Б. Изучение явления резонанса при вынужденных колебаниях.
- №14. Теорема Штейнера.

Молекулярная физика и термодинамика

- №2. Определение величины отношения теплоемкостей воздуха при постоянном давлении и при постоянном объеме.
- №7. Определение влажности воздуха и постоянной психрометра Ассмана.

Электричество

- №3. Измерение сопротивлений проводников.
- №4. Определение емкости конденсатора баллистическим методом.
- №6. Изучение зависимости мощности источника тока от сопротивления нагрузки.
- №14. Изучение вольтамперной характеристики полупроводникового диода.

5.3.3. Контрольные вопросы к защите лабораторных работ

МЕХАНИКА

Работа №3.

- 1. Материальная точка. Точка отсчета. Система координат. Радиус-вектор, приращения радиус-вектора, скорость, ускорение.
- 2. Траектория материальной точки. Зависимость координат от времени при равномерном движении.
- 3. Законы Ньютона.
- 4. Импульс. Закон сохранения импульса. Центр масс. Движение центра масс.
- 5. Элементар ная Работа в механике. Консервативные силы. Кинетическая и потенциальная энергия. Признак консервативности сил. Нахождение потенциальной энергии для известных консервативных сил.
- 6. Упругое и неупругое столкновение двух тел.

Работа №4.

- 1. Момент импульса материальной точки относительно начала координат. Момент силы.
- 2. Уравнение моментов (вывод).
- 3. Закон сохранения импульсов для механической системы.
- 4. Момент импульса твер дого тела, вращающегося вокруг неподвижной оси (вывод). Момент инер ции.
- 5. Угловая скорость и угловое ускорение, их связь с линейной скоростью и ускорением.
- 6. Доказать, что если сумма внешних сил, действующих не механическую систему, равна нулю, то момент силы не зависит от выбора начала координат.

Работа №8.

- 1. Дайте определение вязкости жидкости.
- 2. Ламинарное и турбулентное течение жидкости. Линии тока жидкости. Трубкатока.
- 3. Стационарное течение жидкости.
- 4. Уравнение Бернулли.
- 5. Как проверить, установилось ли движение шарика в жидкости?
- 6. Число Рейнольдса. Как проверить, было ли обтекание шарика ламинарным.
- 7. Влияет ли на результат опыта диаметр сосуда, в котор ом производились измерения?

Работа №11.

- 1. Какие колебания называются гармоническими? Уравнение гармонических колебаний.
- 2. Вывести периоды колебаний математического, физического и пружинного маятников.
- 3. Уравнение затухающих колебаний.

- 4. Логарифмический декремент затухания.
- 5. Апериодическое движение маятника.
- 6. Уравнение вынужденных колебаний.
- 7. Зависимость амплитуды и фазы вынужденных колебаний от частоты вынуждающей силы.

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

Работа №2

- 1. Степени свободы молекул. Закон о равномерном распределении молекул по степеням свободы.
- 2. Теплоемкость. Определение теплоемкости для различных термодинамических процессов.
- 3. Первое начало термодинамики.
- 4. Запись уравнения термодинамики.
- 5. Внутренняя энергия идеального газа.
- 6. Вывод формулы Майера.
- 7. Вывод формулы Пуассона.
- 8. Трудности классической физики при объяснении температурной зависимости теплоемкости газов.

Работа №7

- 1. Испарение, конденсация, кипение.
- 2. Свойства насыщенных и ненасыщенных паров.
- 3. Теоретические и экспериментальные изотермы реальных газов.
- 4. Абсолютная и относительная влажности воздуха.
- 5. Измерение влажности воздуха.

ЭЛЕКТРИЧЕСТВО

Работа №2

- 1. Напряженность и потенциал электрического поля? Связь потенциала с напряженностью поля.
- 2. Что такое эквипотенциальные линии и поверхности?
- 3. Каково взаимное расположение эквипотенциальных поверхностей и линий напряженности?
- 4. Чем вызвана необходимость работы на переменном токе?
- 5. Как определяется положение эквипотенциальных линий?

Работа №3

- 1. Постоянный ток. Сила тока. Плотность тока.
- 2. Электродвижущая сила. Закон Ома для участка цепи. Закон Ома в дифференциальной форме.
- 3. Зависимость сопротивления от параметров проводника и температуры. Способы соединения сопротивлений.
- 4. Разветвление цепи. Правила Кирхгофа для разветвленных цепей.

- 5. Применение правил Кирхгофа при решении задач.
- 6. Погрешности при измерении сопротивления (методом амперметра и вольтметра и балансным методом).

Работа №4

- 1. Электроемкость. Конденсаторы. Вывод формул для емкости плоского, сферического, цилиндрического конденсаторов.
- 2. Параллельное и последовательное соединение конденсаторов.
- 3. Напряженность поля внутри конденсаторов.
- 4. Энергия заряженного конденсатора.
- 5. Плотность энергии электростатического поля.

Работа №6

- 1. Закон Джоуля-Ленца. Мощность, выделяемая на нагрузку.
- 2. Определение ЭДС цепи и величин внутреннего сопротивления.
- 3. Доказать теоретически, что максимальная мощность выделяется на нагрузке при равенстве сопротивления нагрузки внутреннему сопротивлению.
- 4. Определить зависимость коэффициента полезного действия источника тока от внешнего сопротивления.

Работа №14

- 1. Что называют электронной проводимостью и дырочной проводимостью полупроводников?
- 2. Что называют собственной проводимостью полупроводников? Объясните собственную проводимость с точки зрения зонной теории.
- 3. Что называют электронной примесной проводимостью (проводимостью *п*типа) полупроводников? Объясните электронную примесную проводимость с точки зрения зонной теории.
- 4. Что называют дырочной примесной проводимостью (проводимостью p-типа) полупроводников? Объясните дырочную примесную проводимость с точки зрения зонной теории.
- 5. Что такое выпрямление переменного электрического тока? Как определяется КПД выпрямителя?
- 6. Что такое одно- и двухполупериодное выпрямление? При каком из них КПД выпрямителя выше?

5.3.4. Контрольные вопросы по темам для самостоятельной работы

Механика

- 1. Материальная точка. Система отсчета, радиус-вектор, векторы перемещения, скорости и ускорения. Прямолинейное равномерное и равнопеременное движения. Криволинейное движение. Тангенциальное, нормальное и полное ускорение.
- 2. Вращательное движение. Угловая скорость и ускорение. Связь линейных и угловых характеристик движения.

- 3. Законы Ньютона. Инерциальные системы отсчета. Принцип относительности Галилея. Понятие о силе и массе.
- 4. Импульс материальной точки. Импульс системы материальных точек. Закон сохранения импульса.
- 5. Работа и мощность. Силы консервативные и неконсервативные. Работа силы тяжести, сил упругой деформации, работа силы трения. Консервативные системы.
- 6. Кинетическая, потенциальная и полная механическая энергия системы. Закон сохранения энергии в механике.
- 7. Момент количества движения и закон его сохранения.
- 8. Уравнение динамики вращательного движения твер дого тела.
- 9. Момент инерции. Теорема Штейнера.
- 10. Кинетическая энергия вращающегося тела около неподвижной оси. Работа момента сил.
- 11. Деформация твердого тела. Закон Гука. Плотность энергии упругой деформации.
- 12. Давление в жидкости и газе. Закон Паскаля. Закон Архимеда.
- 13. Вязкость. Ламинарное и турбулентное течение жидкости. Уравнение Бернулли.
- 14. Гар монические колебания.
- 15. Физический, математический и пружинный маятники.
- 16. Затухающие колебания.
- 17. Вынужденные колебания. Явление резонанса.

Молекулярная физика

- 1. Термодинамическая система. Параметры состояния. Идеальный газ. Газовые законы. Абсолютная температура. Уравнение Менделеева-Клапейрона.
- 2. Основные положения молекулярно-кинетической теории. Распределение скоростей молекул по Максвеллу. Основные уравнения молекулярно-кинетической теории газов.
- 3. Барометрическая формула. Длина свободного пробега молекул. Распределение частиц по энергиям в потенциальном поле. Барометрическая формула.
- 4. Внутренняя энергия. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам. Уравнение Майера. Теплоемкость идеальных газов. Адиабатный процесс. Уравнение Пуассона. Работа при адиабатном процессе.
- 5. Круговые процессы. Принцип работы тепловой и холодильной машин. Цикл и теорема Карно.
- 6. Второе начало термодинамики. Статистическое истолкование второго начала термодинамики.
- 7. Уравнение Ван-дер-Ваальса и его анализ. Экспериментальные изотермы реального газа.

- 8. Свойства насыщающих и не насыщающих паров. Критическое состояние. Сжижение газов.
- 9. Жидкости. Структура жидкостей. Кипение, испарение и конденсация. Теплота парообразования. Влажность.
- 10. Поверхностное натяжение. Давление Лапласа. Капиллярность.
- 11. Твердые тела. Силы межмолекулярного взаимодействия. Структура кристаллических и аморфных тел.
- 12. Теплоемкость твердых тел. Плавление и отвердевание. Удельная теплота плавления. Фазовые диаграммы. Тройная точка.

Электричество.

- 1. Заряды. Закон сохранения зарядов. Взаимодействие зарядов. Закон Кулона.
- 2. Напряженность электрического поля. Принцип суперпозиции полей.
- 3. Поток вектора напряженности электрического поля. Теорема Гау сса и ее применение.
- 4. Работа перемещения заряда в электрическом поле. Потенциал эквипотенциальной поверхности. Циркуляция вектора напряженности электрического поля.
- 5. Связь напряженности электрического поля и потенциала.
- 6. Проводники в электрическом поле.
- 7. Электроемкость проводников. Вывод формул плоского, сферического и цилиндрического конденсаторов.
- 8. Энергия заряженного конденсатора.
- 9. Диэлектрики в электрическом поле.
- 10. Постоянный ток. Сила тока. Плотность тока.
- 11. Закон Ома. Закон Ома в дифференциальной форме. Закон Ома для неоднородного участка цепи. Последовательное и параллельное соединения проводников.
- 12. Работа и мощность постоянного тока. Закон Джоуля-Ленца.
- 13. Электродвижущая сила (ЭДС). Сторонние силы.
- 14. Электрические цепи. Правила Кирхгофа.

Магнетизм.

- 1. Магнитное поле тока. Элемент тока. Вектор магнитной индукции.
- 2. Магнитное поле элемента тока. Закон Био-Савара -Лапласа.
- 3. Действие магнитного поля на проводник с током. Сила Ампера. Взаимодействие проводников с током.
- 4. Магнитное поле в веществе. Диа-, пара- и ферромагнетики. Гистерезис.
- 5. Поток векторов магнитной индукции. Закон электромагнитной индукции. Правило Ленца.
- 6. Явление самоиндукции. Индуктивность проводников. Индуктивность соленоида. ЭДС самоиндукции.

- 7. Сила действия на заряженную частицу в электромагнитном поле. Сила Лоренца.
- 8. Переменный ток. Получение переменного тока.
- 9. Конденсатор и индуктивность в цепи переменного тока.
- 10. Мощность в цепи переменного тока.
- 11. Резонанс в цепи переменного тока.
- 12. Колебательный контур. Формула Томсона.
- 13. Колебательный контур. Затухающие колебания.
- 14. Колебательный контур. Вынужденные колебания. Резонанс.
- 15. Вихревое электрическое поле. Ток смещения. Уравнения Максвелла.
- 16. Электромагнитные волны. Энергия электромагнитных волн. Интенсивность электромагнитных волн.
- 17. Работа выхода электронов из металла. Термоэлектрическая эмиссия. Ток в вакууме. Электронные лампы: диод и триод.
- 18. Ток в электролитах. Электролитическая диссоциация. Законы электролиза.
- 19.Ток в газах. Ионизация и рекомбинация. Самостоятельный и несамостоятельный разряд.
- 20.Полупроводники. Собственная и примесная проводимость полупроводников. Плоскостная и зонная модели проводимости. Полупроводниковый диод.

Оптика. Атомная и ядерная физика.

- 1. Фотометрические величины. Кривая видности.
- 2. Геометрическая оптика. Законы отражения и преломления.
- 3. Формула тонкой линзы. Построение изображения в тонкой линзе.
- 4. Оптические приборы. Увеличение линзы. Ход лучей в микроскопе. Увеличение микроскопа. Увеличение телескопа.
- 5. Естественный и поляризованный свет. Методы получения поляризованного света. Закон Брюстера. Закон Малюса.
- 6. Дисперсия сета. Нормальная и анормальная дисперсия света в веществе. Фазовая и групповая скорости света в веществе.
- 7. Интерференция света. Получение когерентных лучей.
- 8. Интерференция в тонких пленках. Интерференция равного наклона и равной толщины. Кольца Ньютона. Интерферометры.
- 9. Дифракция света. Принцип Гюйгенса-Френеля. Закон Френеля.
- 10. Дифракция в параллельных лучах.
- 11. Дифракционная решетка. Спектральное разложение света дифракционной решеткой.
- 12. Тепловое излучение. Законы Кирхгофа. Черное тело.
- 13. Законы Стефана-Больцмана, Вина.
- 14. Постулаты Планка. Формула Планка.
- 15. Фотоэффект. Законы фотоэффекта.
- 16. Эффект Комптона.

- 17. Опыты Резерфорда по рассеиванию альфа-частиц. Атом Бора. Спектр атома водорода. Бальмера.
- 18. Волновые свойства частиц. Гипотеза де-Бройля. Дифракция электронов.
- 19. Соотношение неопределенностей Гейзенберга.
- 20. Уравнение Шредингера. Волновая функция и ее свойства.
- 21. Стационарное уравнение Шредингера. Спектр атома водорода. Квантовые числа. Правила отбора.
- 22. Основные положения специальной теории относительности. Преобразования Лоренца.
- 23. Преобразование скоростей в релятивистской механике.
- 24. Энергия и импульс в релятивистской механике.
- 25. Уравнение Ньютона в релятивистской механике.
- 26. Относительность длины отрезков, промежутков времени и одновременности. Интервал в СТО.
- 27. Строение атомного ядра.
- 28. Радиоактивный распад. Закон радиоактивного распада.
- 29. Деление ядер. Энергия связи ядра.
- 30. Элементар ные частицы. Классификация частиц.

5.3.5. Контрольные вопросы к экзамену (7 семестр)

МЕХАНИКА

- 1. Кинематика поступательного движения. Система отсчета. Скорость и ускорение материальной точки как производные радиус-вектора по времени. Нормальное, тангенциальное и полное ускорения.
- 2. Элементы кинематики вращательного движения. Движение частицы по окружности. Угловое перемещение, угловая скорость и угловое ускорение, их связь с линейными перемещениями, скоростями и ускорениями точек вращающегося тела.
- 3. Динамика поступательного движения материальной точки и твердого тела. Первый закон Ньютона. Понятие инерциальной системы отсчета.
- 4. Масса и сила. Импульс материальной точки. Второй закон Ньютона. Уравнения движения.
- 5. Внешние и внутренние силы. Центр масс (центр инерции) механической системы и закон его движения.
- 6. Импульс (количество движения) системы материальных точек. Закон сохранения импульса.
- 7. Кинетическая энергия. Консервативные и неконсервативные силы. Потенциальная энергия и энергия взаимодействия. Закон сохранения энергии в механике.
- 8. Момент силы и момент импульса механической системы. Закон сохранения момента импульса.
- 9. Момент инерции тела относительно оси вращения. Уравнение динамики вращательного движения твердого тела относительно неподвижной оси.
- 10. Работа и мощность. Работа переменной силы. Работа внешних сил при

- растяжении пружины.
- 11. Закон всемирного тяготения. Гравитационная масса. Гравитационное поле, его напряженность и потенциал.
- 12. Давление в жидкостях. Закон Паскаля. Несжимаемая жидкость. Гидростатическое давление. Закон Архимеда.
- 13. Кинематическое описание движения жидкости. Векторные поля. Линии тока и трубки тока в жидкостях. Уравнение неразрывности для несжимаемой жидкости.
- 14. Стационарное течение идеальной жидкости. Уравнение Бернулли. Статическое, динамическое и гидростатическое давления.
- 15. Течение вязкой жидкости. Внутреннее трение (вязкость). Коэффициент вязкости. Формула Стокса. Метод Стокса по определению коэффициента вязкости жидкостей.
- 16. Гармонические механические колебания. Уравнение гармонических колебаний. Основные характеристики колебательного движения: амплитуда, фаза, частота, период.
- 17. Дифференциальное уравнение свободных гармонических колебаний. Кинематические характеристики гармонических колебаний: смещение, скорость, ускорение. Энергия гармонических колебаний.
- 18. Гармонический осциллятор. Примеры гармонических осцилляторов: пружинный, физический и математический маятники. Периоды их колебаний.
- 19. Свободные затухающие колебания. Дифференциальное уравнение затухающих колебаний и его решение. Коэффициент затухания. Логарифмический декремент.
- 20. Вынужденные колебания гармонического осциллятора под действием синусоидальной силы. Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда, смещение и фаза вынужденных колебаний. Понятие о резонансе. Примеры явления резонанса.
- 21. Волны. Продольные и поперечные волны. Уравнение плоской волны. Фазовая и групповая скорости распространения волн в среде. Дифференциальное волновое уравнение.

МОЛЕКУЛЯРНАЯ ФИЗИКА

- 1. Молекулярно-кинетическая теория идеального газа. Макроскопические параметры состояния как средние значения. Тепловое равновесие. Модель идеального газа.
- 2. Основное уравнение молекулярно-кинетической теории идеальных газов.
- 3. Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование термодинамической температуры.
- 4. Уравнение состояния идеального газа. Уравнение Клапейрона-Менделеева. Законы идеального газа для изо-процессов.
- 5. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул. Внутренняя энергия идеального газа.

- 6. Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения.
- 7. Барометрическая формула. Распределение Больцмана во внешнем потенциальном поле.
- 8. Внутреннее трение (вязкость). Коэффициенты вязкости газов и жидкостей. Молекулярно-кинети-ческая теория внутреннего трения. Методы измерения коэффициента вязкости.
- 9. Среднее число столкновений и средняя длина свободного пробега молекулы. Эффективный диаметр молекулы.
- 10. Явления переноса в газах: теплопроводность, диффузия, внутреннее трение.
- 11. Количество теплоты. Теплоемкость идеального газа. Зависимость теплоемкости идеального газа от вида процесса. Формула Майера.
- 12. 1-е начало термодинамики. Внутренняя энергия и работа газа при изменении его объема.
- 13. Применение 1-го начала термодинамики к изотермическому, изохорному и изобарному процессам.
- 14. Адиабатный процесс. Уравнение Пуассона. Работа при адиабатном процессе.
- 15. Статистическое толкование 2-го начала термодинамики. Понятие об энтропии. Энтропия идеального газа.
- 16. Обратимые и необратимые процессы. Круговой процесс (цикл). Второй закон термодинамики. Принцип действия тепловых двигателей и холодильных машин.
- 17. Цикл Карно и его КПД для идеального газа.
- 18. Реальные газы. Уравнение Ван-дер-Ваальса. Теоретические и экспериментальные изотермы реальных газов.

ЭЛЕКТРОСТАТИКА

- 1. Закон сохранения электрического заряда. Взаимодействие электрических зарядов. Закон Кулона.
- 2. Электрическое поле. Напряженность поля. Принцип суперпозиции электрических полей.
- 3. Поток вектора напряженности электрического поля. Теорема Гаусса для электростатического поля в вакууме. Применение теоремы Гаусса к расчету электрического поля.
- 4. Циркуляция вектора напряженности электрического поля. Работа по перемещению заряда в электростатическом поле. Потенциал электростатического поля и его связь с напряженностью.
- 5. Электрическая емкость проводника. Конденсаторы. Емкость плоского конденсатора. Параллельное и последовательное соединение конденсаторов.
- 6. Энергия взаимодействия электрических зарядов. Энергия системы заряженных проводников. Энергия заряженного конденсатора. Плотность энергии электростатического поля.

7. Проводники и диэлектрики в электрическом поле.

ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК

- 1. Электрический ток. Условия существования тока. Сила тока. Плотность тока.
- 2. Сторонние силы. Электродвижущая сила (Э.Д.С.) и напряжение. Источники Э.Д.С.
- 3. Закон Ома в интегральной и дифференциальной формах. Сопротивление проводников. Закон Ома для замкнутой цепи и участка цепи, со держащего источник Э.Д.С. Параллельное и последовательное соединение проводников.
- 4. Работа и мощность тока. Закон Джоуля-Ленца в интегральной и дифференциальной формах.
- 5. Разветвленные цепи. Правила Кирхгофа. Применение правил Кирхгофа к мостику Уитстона.
- 6. Работа выхода электронов из металла. Контактная разность по тенциалов.
- 7. Термоэлектрические явления. Электрический ток в вакууме. Термоэлектронная эмиссия.
- 8. Полупроводники. Собственная и примесная проводимость полупроводников. Зонная модель проводимости. Электронный и дырочный полупроводники.

5.3.6. Контрольные вопросы к зачету с оценкой (8 семестр)

МАГНИТНОЕ ПОЛЕ В ВАКУУМЕ

- 1. Взаимодействие движущихся зарядов. Магнитное поле. Закон Био-Савара-Лапласа и его применение к расчету магнитного поля прямого тока и кругового витка с током.
- 2. Магнитное поле кругового тока. Момент сил, действующих на виток с током в магнитном поле. Магнитный момент витка с током. Энергия витка с током во внешнем магнитном ноле.
- 3. Магнитная индукция. Действие магнитного поля на проводник с током. Сила Ампера. Взаимодействие проводников с током.
- 4. Вихревой характер магнитного поля. Циркуляция вектора магнитной индукции в вакууме. Закон полного тока для магнитного поля в вакууме (Теорема Ампера). Расчет магнитного поля прямого тока и длинного соленоида.
- 5. Действие магнитного поля на движущийся заряд. Сила Лоренца.
- 6. Движение заряженных частиц в магнитном поле. Эффект Холла.
- 7. Поток вектора магнитной индукции (Магнитный поток). Теорема Гаусса для магнитного поля в вакууме.
- 8. Контур с током в магнитном поле. Работа по перемещению проводника с током и контура с током в магнитном поле.

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

1. Явление электромагнитной индукции. Закон электромагнитной индукции (закон Фарадея). Электродвижущая сила индукции.

- 2. Индуктивность контура. Самоиндукция. Правило Ленца.
- 3. Явления самоиндукции при замыкании и размыкании электрической цепи.
- 4. Энергия магнитного поля контура с током. Энергия магнитного поля соленоида. Объемная плотность энергии магнитного поля.

МАГНИТНОЕ ПОЛЕ В ВЕЩЕСТВЕ

- 1. Магнитные моменты электронов и атомов. Намагничивание вещества. Молекулярные токи. Намагниченность. Напряженность магнитного поля в веществе. Магнитная проницаемость.
- 2. Диамагнетизм и парамагнетизм.
- 3. Ферромагнетики и их свойства. Природа ферромагнетизма. Точка Кюри. Доменная структура. Гистерезис.

УРАВНЕНИЯ МАКСВЕЛЛА ДЛЯ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ

- 1. Вихревое электрическое поле. Ток смещения.
- 2. Система уравнений Максвелла в интегральной и дифференциальной формах.

ОПТИКА

- 1. Интерференция света. Когерентность и монохроматичность световых волн. Оптическая длина пути. Расчет интерференционной картины от двух когерентных источников.
- 2. Интерференция света в тонких пленках. Полосы раной толщины и равного наклона.
- 3. Интерференция света на клине. Кольца Ньютона в отраженном и проходящем свете.
- 4. Дифракция света. Принцип Гюйгенса-Френеля. Зоны Френеля. Дифракция Фраунгофера на одной щели и дифракционной решетке.
- 5. Поляризация света. Естественный и поляризованный свет. Поляроиды и поляризационные призмы. Закон Малюса.
- 6. Поляризация света при отражении от диэлектрика. Закон Брюстера.
- 7. Двойное лучепреломление. Вращение плоскости поляризации.
- 8. Внешний фотоэффект и его законы. Уравнение Эйнштейна для внешнего фотоэффекта. Масса и импульс фотона.
- 9. Тепловое излучение. Квантовая гипотеза и формула Планка. Черное тело. Закон Кирхгофа. Закон Стефана-Больцмана.
- 10. Распределение энергии в спектре абсолютно черного тела. Закон смещения Вина. Оптическая пирометрия.
- 11. Масса и импульс фотона. Эффект Комптона.

ЭЛЕМЕНТЫ АТОМНОЙ И КВАНТОВОЙ ФИЗИКИ

- 1. Закономерности в спектре атома водорода. Модель атома Томсона. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома.
- 2. Постулаты Бора. Атом водорода по Бору. Опыты Франка и Герца.
- 3. Соотношение неопределенностей как проявление корпускулярноволнового дуализма свойств материи. Формула де Бройля.
- 4. Уравнение Шредингера для стационарных состояний. Волновая функция и

- ее статистический смысл. Частица в одномерной прямоугольной потенциальной яме.
- 5. Главное, орбитальное и магнитное квантовые числа. Опыт Штерна и Герлаха. Спин электрона. Спиновое квантовое число. Принцип Паули. Строение электронных оболочек.

ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА

- 1. Состав ядра. Нуклоны. Взаимодействие нуклонов и понятие о свойствах и природе ядерных сил. Заряд, размер и масса атомного ядра. Массовое и зарядовое числа.
- 2. Радиоактивность. Закон радиоактивного распада. Период полураспада. Радиоуглеродный метод датировки.
- 3. Дефект массы и энергия связи ядра. Ядерные реакции и законы сохранения. Закономерности и происхождение альфа-, бета- и гамма-излучений атомных ядер.
- 4. Реакция деления и синтеза ядер. Цепная реакция деления.

5.3.7. Контрольные вопросы к экзаменам

Требования к экзаменам

Для сдачи экзамена студент должен полностью раскрыть содержание основных вопросов, предлагаемых преподавателем, выполнить самостоятельные практические задания, своевременно сдав их преподавателю, проработать и законспектировать вопросы, вынесенные для самостоятельного изучения.

Вопросы к экзамену (7 семестр).

- 1. Кинематика. Понятие материальной точки (примеры).
- 2. Траектория материальной точки. Путь и перемещение.
- 3. Путь, пройденный материальной точкой при равномерном и равнопеременном движении.
- 4. Тангенциальное, нормальное и полное ускорение материальной точки.
- 5. Угловое ускорение.
- 6. Первый закон Ньютона.
- 7. Понятие силы. Масса и вес тела.
- 8. Второй закон Ньютона.
- 9. Третий закон Ньютона.
- 10. Закон сохранения импульса.
- 11. Принцип относительности Галилея.
- 12. Работа упругих сил, гравитационной силы, работа однородной силы тяжести.
- 13. Закон сохранения энергии в механике.
- 14. Основной закон динамики вращательного движения твер дого тела.
- 15. Механика жидкостей. Уравнение неразрывности.
- 16. Вязкость. Ламинарное и турбулентное течение жидкостей.

- 17. Гармонические колебания. Амплитуда, частота, фаза. Затухающие и вынужденные колебания.
- 18. Газовые законы (Бойля-Мариотта, Гей-Люссака).
- 19. Уравнение Клапейрона-Менделеева.
- 20.Закон Максвелла для распределения молекул идеального газа по скоростям.
- 21. Среднее число столкновений и средняя длина свободного пробега молекул.
- 22.Внутренняя энергия.
- 23. Первое начало термодинамики.
- 24. Работа газа при изменении его объема.
- 25. Адиабатический процесс. Уравнение Пуассона. Работа при адиабатическом процессе.
- 26. Закон Кулона. Точечный заряд. Диэлектрическая проницаемость среды.
- 27. Поток вектор а напряженности. Теорема Гаусса для электростатического поля в вакууме.
- 28. Конденсаторы. Емкость плоского конденсатора. Параллельное и последовательное соединение конденсаторов.
- 29. Закон Ома. Сопротивление проводников.

Вопросы к экзамену (8 семестр)

- 1. Система отсчета. Инер циальные и неинер циальные системы отсчета (примеры).
- 2. Средняя и мгновенная скорость движения материальной точки.
- 3. Среднее и мгновенное ускорение материальной точки.
- 4. Угловая скорость движения материальной точки по окружности.
- 5. Связь между линейными и угловыми величинами.
- 6. Инертность. Масса инертная и гравитационная.
- 7. Основные единицы системы СИ.
- 8. Импульс. Общая формулировка второго закона Ньютона.
- 9. Механическая система. Внешние и внутренние силы. Замкнутые системы.
- 10. Центр масс системы материальных точек. Закон движения центра масс.
- 11. Работа и энергия. Работа переменной силы. Мощность. Единицы измерения.
- 12. Кинетическая и потенциальная энергия (примеры).
- 13. Момент инерции. Теорема Штейнера. Кинетическая энергия вращающегося тела.
- 14. Момент импульса и закон его сохранения.
- 15. Уравнение Бернулли.
- 16. Движение тел в жидкостях и газах. Лобовое сопротивление и подъемная сила.
- 17. Продольные и поперечные волны.
- 18. Модель идеального газа.

- 19. Основное уравнение молекулярно-кинетической теории идеального газа.
- 20. Барометрическая формула.
- 21. Явления переноса (диффузия, теплопроводность), внутреннее трение.
- 22. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы.
- 23. Теплоемкость. Уравнение Майера.
- 24. Применение первого начала термодинамики к изопроцессам (изохорный, изобарный, изотермический).
- 25. Давление Лапласа. Смачивание. Капиллярные явления.
- 26. Напряженность электростатического поля.
- 27. Потенциал электр остатического поля.
- 28. Электрический ток. Сила и плотность тока.
- 29. Работа и мощность тока. Закон Джоуля-Ленца.

5.3.8. Тематика сообщений:

- 1. Открытие радиоактивности.
- 2. Опыты Герца.
- 3. Открытие электрона.
- 4. Открытие нейтрино.
- 5. Энтропия и ее свойства.
- 6. Второе начало термодинамики и теория «тепловой смерти Вселенной».
- 7. Синергетика.

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Оценивание степени освоения обучающимися дисциплины осуществляется на основе «Положения о балльно-рейтинговой системе оценки успеваемости студентов МГОУ».

Сопоставимость рейтинговых показателей студента по разным дисциплинам и Балльно-рейтинговой системы оценки успеваемости студентов обеспечивается принятием единого механизма оценки знаний студентов, выраженного в баллах, согласно которому 100 баллов - это полное усвоение знаний по учебной дисциплине, соответствующее требованиям учебной программы.

Максимальный результат, который может быть достигнут студентом — 100 баллов.

Шкала соответствия рейтинговых оценок пятибалльным оценкам: 100-81 баллов - «отлично» (5); 80-61 баллов - «хорошо» (4); 60-41 баллов - «удовлетворительно» (3); до 40 баллов - «неудовлетворительно».

Ответ обучающегося на экзамене или зачёте оценивается в баллах с учетом шкалы соответствия рейтинговых оценок пятибалльным оценкам.

Оце	нка по 5-балльной системе	Оценка по 100-балльной системе			
5	отлично	81 - 100			
4	хорошо	61 - 80	зачтено		
3	удовлетворительно	41 - 60			
2	неудовлетворительно	0 - 40	не зачтено		

В экзаменационную ведомость и зачетную книжку выставляются оценки по пятибалльной шкале и рейтинговые оценки в баллах.

При получении студентом на экзамене или зачёте неудовлетворительной оценки в ведомость выставляется рейтинговая оценка в баллах (<40 баллов), соответствующая фактическим знаниям (ответу) студента.

Критерии оценки знаний студентов в рамках каждой учебной дисциплины или групп дисциплин вырабатываются преподавателями согласованно на кафедрах Университета исходя из требований образовательных стандартов.

Процедура оценивания знаний и умений состоит из следующий составных элементов:

- 1) учет посещаемости лекционных и лабораторных занятий осуществляется по ведомости, представленной ниже в форме таблицы;
- 2) текущий контроль.

Московский государственный областной университет Ведомость учета посещения Физико-математический факультет

Направление: 44.03.01 - Педагогическое образование	
Дисциплина: Физика	
Группа №	
Преподаватель:	

$N_{\underline{0}}$	Фамилия И.О.		Посещение занятий				Итого		
п/п	студента	1	2	3	4			18	%
1.		+	-	+	-			+	61
2.		-	+	+	+			+	66

Московский государственный областной университет Ведомость учета текущей успеваемости Физико-математический факультет

Направление: 44.03.01 - Педагогическое образование
Дисциплина: Физика
Группа №
Преподаватель:

№	Фамилия	Сумма баллов, набранных в семестре	Под-	Обща	Итоговая	Подпись
п/	И.О.		пись	Я	оценка	препода-

П	студента	Контр	Посе-	Выпол	Решение	Консп	Сооб	Отме	препо	сумма	Циф	Пропись	вателя
		ольны	щение	нение	задач)	ект	щение	тка об	дава-	бал-	pa		
		e		лабора	до 10			экзам	теля.	лов			
		работ		торны	баллов			ене					
		Ы	до 10	х работ						до 100			
		До 10	балло			До 10	До 10	до 40		балло			
		балло	В	до 10		балло	балло	балло		В			
		В		баллов		В	В	В					
1	2	3	4	5	6	7		8	9	10	11	12	13
1.													
2.													
3.													

Посещение занятий:

- 8-10 баллов, если студент посетил 71-90% от всех занятий
- 5-7 балла, если студент посетил 51-70% от всех занятий
- 2-4 балла, если студент посетил 31-50% от всех занятий
- 0-1 баллов, если из всех занятий студент посетил 0-30% занятий

Решение задач:

- 8-10 баллов, если студент решил 71-90% задач
- 5-7 балла, если студент решил51-70% задач
- 2-4 балла, если студент решил 31-50% задач
- 0-1 баллов, если студент решил 0-30% задач

Выполнение лабораторных работ:

- 8-10 баллов, если студент выполнил 71-90% от всех лабораторных работ
- 5-7 балла, если студент выполнил 51-70% от всех лабораторных работ
- 2-4 балла, если студент выполнил 31-50% от всех лабораторных работ
- 0-1 баллов, если студент выполнил 0-30% от всех лабораторных работ

Написание конспекта:

- 8-10 баллов, если студент отобразил в конспекте 71-90% всех тем
- 5-7 баллов, если студент отобразил в конспекте 51-70% всех тем
- 2-4 баллов, если студент отобразил в конспекте 31-50% всех тем
- 0-1 баллов, если студент отобразил в конспекте 0-30% всех тем

Выполнение контрольной работы:

- 8-10 баллов, если студент выполнил 71-90% контрольной работы
- 5-7 баллов, если студент выполнил 51-70% контрольной работы
- 2-4 балла, если студент выполнил 31-50% контрольной работы
- 0-2 балла, если студент выполнил 0-30% контрольной работы

Написание сообщения:

- 8-10 баллов, если студент отобразил в сообщении 71-90% выбранной темы
- 5-7 баллов, если студент отобразил в сообщении 51-70% выбранной темы

- 2-4 баллов, если студент отобразил в сообщении 31-50% выбранной темы
- 0-1 баллов, если студент отобразил в сообщении 0-30% выбранной темы

Структура оценивания экзаменационного ответа

Уровни оценивания	Критерии оценивания	Баллы			
Высокий	Полные и точные ответы на два вопроса экзаменационного билета. Свободное владение				
	основными терминами и понятиями курса; последовательное и логичное изложение материала	32-40			
	курса; законченные выводы и обобщения по теме				
	вопросов; исчерпывающие ответы на вопросы при сдаче экзамена.				
Оптимальный	Полные и точные ответы на два вопроса экзаменационного билета. Знание основных терминов и понятий курса; последовательное	22-31			
	изложение материала курса; умение формулировать некоторые обобщения по теме	22 31			
	вопросов; достаточно полные ответы на вопросы при сдаче экзамена.				
Удовлетворительный	Полный и точный ответ на один вопрос экзаменационного билета. Удовлетворительное знание основных терминов и понятий курса;	12-21			
	удовлетворительное знание и владение методами и средствами решения задач; недостаточно				
	последовательное изложение материала курса;				
	умение формулировать отдельные выводы и обобщения по теме вопросов.				
Неудовлетворительный	Полный и точный ответ на один вопрос				
	экзаменационного билета и менее.	0-11			

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная литература:

- 1. Савельев И.В. Курс общей физики: учеб. пособие: в 3-х т. / И. В. Савельев. 15-е изд., стереот. СПб: Лань, 2019. Текст: непосредственный.
- 2. **Трофимова, Т.И.** Курс физики [Текст]: с примерами решения задач: учебник для вузов в 2-х т. т.1 / Т. И. Трофимова, А. В. Фирсов. М.: Кнорус, 2015. 584с. Текст: непосредственный.
- 3. **Трофимова, Т.И.** Курс физики [Текст]: с примерами решения задач: учебник для вузов в 2-х т. т.2 / Т. И. Трофимова, А. В. Фирсов. М.: Кнорус, 2015. 378с. Текст: непосредственный.
- 4. Савельев И.В. Курс общей физики: учеб. пособие: в 3-х т. / И.В. Савельев. 15-е изд., стереот. СПб: Лань, 2019. Текст: непосредственный.
- 5. Савельев, И.В. Курс общей физики: учебное пособие: в 3 томах / И.В. Савельев. Санкт-Петербург: Лань, [б. г.]. Том 1:

- Механика. Молекулярная физика 2019. 436 с. ISBN 978-5-8114-3988-1. URL: https://e.lanbook.com/book/113944 (дата обращения: 18.07.2019). Режим доступа: для авториз. пользователей Электронно-библиотечная система «Лань». Текст: электронный.
- 6. Савельев, И.В. Курс общей физики: учебное пособие: в 3 томах / И.В. Савельев. Санкт-Петербург: Лань, [б. г.]. Том 2: Электричество и магнетизм. Волны. Оптика 2019. 500 с. ISBN 978-5-8114-3989-8. URL: https://e.lanbook.com/book/113945 (дата обращения: 18.07.2019). Режим доступа: для авториз. пользователей Электроннобиблиотечная система «Лань». Текст: электронный
- 7. Савельев, И.В. Курс общей физики: учебное пособие: в 3 томах / И.В. Савельев. Санкт-Петербург: Лань, [б. г.]. Том 3: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц 2018. 320 с. ISBN 978-5-8114-0632-6. URL: https://e.lanbook.com/book/106893 (дата обращения: 18.07.2019). Режим доступа: для авториз. пользователей Электроннобиблиотечная система «Лань». Текст: электронный

6.2. Дополнительная литература

- 1. Савельев И.В. Курс общей физики: учеб. пособие для втузов. т.1: механика; колебания и волны; молекулярная физика / И.В.Савельев. 4-е изд. М.: Наука, 1970. 510с.
- 2. Савельев И.В. Курс общей физики: учеб. пособие для втузов. т.1: механика; колебания и волны; молекулярная физика / И.В.Савельев. 5-е изд. М.: Наука, 1973. 510с.
- 3. Савельев И.В. Курс общей физики: учеб. пособие для втузов. т.1: механика; молекулярная физика / И.В.Савельев. М.: Наука, 1977. 416с.
- 4. Савельев И.В. Курс общей физики: в 5 кн. кн.5: квантовая оптика; атомная физика; физика твердого тела; физика атом. Ядра и элем. частиц. / И.В.Савельев.—М.: АСТ, 2007. 368с.
- 5. Кикоин А.К. Молекулярная физика [Текст]: учеб.пособие для вузов / А. К. Кикоин, И. К. Кикоин. 4-е изд.,стереотип. СПб.: Лань, 2019. 480с.
- 6. Трофимова Т.И. Краткий курс физики: с примерами решения задач: учеб. пособие / Т.И.Трофимова. М.: Кнорус, 2007. 280с.
- 7. Трофимова Т.И. Сборник задач по курсу физики с решениями [Текст]: учеб.пособие для вузов / Т. И. Трофимова. 8-е изд.,пепераб. М.: Высш.шк., 2007. 591с. Текст: непосредственный.
- 8. Сахаров Д.И. Сборник задач по физике: для вузов / Д.И. Сахаров. 13-е изд. М.: Оникс 21 век, 2003. 400с.

6.3. Ресурсы информационно-телекоммуникационной сети «Интернет»

1. Сайт кафедры, где размещена учебно-методическая литература для студентов

http://mgou.ru/index.php?option=com_content&task=view&id=48&Itemid=614;

2. Кравченко Н.С., Ревинская О.Г. Методы обработки результатов измерений и оценки погрешностей в учебном лабораторном практикуме. **Учебное пособие** / Национальный исследовательский Томский политехнический университет. — Томск: Изд-во Томского политехнического университета, 2011. — 88 с. http://www.twirpx.com/file/611553/

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

- 1. Грань Т.Н., Холина С.А. Методические рекомендации по проведению лекционных занятий.
- 2. Грань Т.Н., Холина С.А. Методические рекомендации по проведению лабораторных и практических занятий.

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows Microsoft Office Kaspersky Endpoint Security

Информационные справочные системы:

Система ГАРАНТ Система «КонсультантПлюс»

Профессиональные базы данных

fgosvo.ru pravo.gov.ru www.edu.ru

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ «ФИЗИКА»

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения занятий лекционного и семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и

промежуточной аттестации, укомплектованные учебной мебелью, доской, демонстрационным оборудованием.

- помещения для самостоятельной работы, укомплектованные учебной мебелью, пер сональными компьютерами с подключением к сети Интер нет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду МГОУ;
- помещения для хранения и профилактического обслуживания учебного оборудования, укомплектованные мебелью (шкафы/стеллажи), наборами демонстрационного оборудования и учебно-наглядными пособиями;
 - лаборатория, оснащенная лабораторным оборудованием:
 - 1. Лабораторные стенды для изучения полупроводниковых приборов.
 - 2. Лабораторный стенд для изучения аналоговых устройств.
 - 3. Лабораторные стенды универ сальные ОАВТ для изучения цифровых устройств.
 - 4. Комплекты электроизмерительных приборов.
 - 5. Интерактивная доска.
 - 6. Мультимедийный проектор.
 - 7. Установки для измерения фокусного расстояния линз и видимого увеличения оптических приборов
 - 8. Экспериментальная установка по определению скорости полёта пули
 - 9. Лабораторный стенд для определения основных законов динамики
 - 10. Лабораторный стенд для изучения затухающих колебаний
 - 11. Экспер иментальная установка по определению показателя Пуассона воздуха
 - 12. Экспер иментальная установка по определению влажности воздуха