Документ подписан простой электронной подписью Информация о владельце:

ФИО: Наумова Наталия Алексиддин ИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ

Должность: Ректор осударственное образовательное учреждение высшего образования Московской области Дата подписания: 24.10 ДОСКОВСКИЙ ГОС УДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ Уникальный программный ключ: (МГОУ)

6b5279da4e034bff679172803da5b7b559fc69e2

Кафедра теоретической и прикладной химии

Утвержден

На заседании кафедры

Протокол от «10» июня 2021 г., № 11

Зав. кафедрой

Васильев Н.В./

Фонд оценочных средств

АНАЛИТИЧЕСКАЯ ХИМИЯ

Направление подготовки

06.03.01 «Биология»

Профиль

«Биоэкология»

Квалификация

<u>Бакалавр</u>

Форма обучения:

очная

Мытищи 2021

Авторы-составители:

Радугина Ольга Георгиевна, кандидат химических наук, доцент кафедры теоретической и прикладной химии;

Петренко Дмитрий Борисович, кандидат химических наук, доцент кафедры теоретической и прикладной химии

Фонд оценочных средств «Аналитическая химия» разработан в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 06.03.01 Биология, утвержденного приказом МИНОБРНАУКИ № 920 от 7 августа $2020 \, \Gamma$.

Дисциплина «Аналитическая химия» относится к вариативной части базового блока Б1 и является обязательной для изучения.

УП-21

СОДЕРЖАНИЕ

1.	Организация занятий по дисциплине (модулю)	4
2.	Перечень компетенций с указанием этапов их формирования в процессе	
	освоения образовательной программы	4
3.	Описание показателей и критериев оценивания компетенций на различных	
	этапах их формирования, описание шкал оценивания	5
4.	Оценочные средства текущего контроля успеваемости и сформированности	
	компетенций	6
4.	1. Комплект разноуровневых заданий и задач для текущего контроля	
	знаний по разделам программы	6
5.	Методические материалы, определяющие процедуры оценивания знаний,	
	умений, навыков и (или) опыта деятельности, характеризующих этапы	
	формирования компетенций	21
6.	Учебно-методическое и ресурсное обеспечение дисциплины	
7.	Методические указания по освоению дисциплины	26
	Информационные технологии для осуществления образовательного процесса	

Год начала подготовки (по учебному плану) 2021

ОЦЕНОЧНЫЕ СРЕДСТВА ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ И РЕАЛИЗУЕМЫХ В ДИСЦИПЛИНЕ (МОДУЛЕ) КОМПЕТЕНЦИЙ

В соответствии с требованиями ФГОС ВПО и рекомендациями ООП ВО по направлению подготовки <u>06.03.01 Биология</u> для проведения текущего контроля успеваемости и промежуточной аттестации дисциплины разработан Фонд оценочных средств по дисциплине «Аналитическая химия», являющийся неотъемлемой частью учебно-методического комплекса настоящей дисциплины.

Этот фонд включает:

- перечень компетенций с указанием этапов формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

1. Организация занятий по дисциплине (модулю)

Занятия по дисциплине «Аналитическая химия» представлены следующими видами работы: лекции, лабораторные работы и самостоятельная работа студентов.

2. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код и наименование компетенции	Этапы формирования		
ОПК- 6	1.Работа на учебных занятиях:		
Способен использовать в профессиональной деятель-	лекции, лабораторные работы.		
ности основные законы физики, химии, наук о Земле и	Темы 1-7.		
биологии, применять методы математического анализа	2.Самостоятельная работа:		
и моделирования, теоретических и экспериментальных	домашние задания, написание		
исследований, приобретать новые математические и	конспектов, подготовка докладов.		
естественнонаучные знания, используя современные			
образовательные и информационные технологии			

3. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оценива- емые	Уровень сформи-	Этап формирования	Описание показателей	Критерии оценивания	Шкала оценива-
компе-	рованно-				ния,
тенции	сти				баллы
ОПК – 6	Порого-	1. Работа на учебных занятиях:	Знать:	Текущий контроль усвое-	41-60
	вый	лекции, лабораторные работы.	-основные законы физики, химии, наук о Земле и биологии,	ния знаний на основе	
		2.Самостоятельная работа.	-основы аналитической химии и химических методов анализа	оценки устного ответа на	
			Уметь:	вопрос, сообщения, тест,	
			-применять методы математического анализа и моделирова-	конспект, защита лабора-	
			ния, теоретических и экспериментальных исследований,	торных работ, экзамен	
			-приобретать новые математические и естественнонаучные		
			знания, используя современные образовательные и информа-		
			ционные технологии		
	Продви-	1. Работа на учебных занятиях:	Знать:	Текущий контроль усвое-	61-100
	нутый	лекции, лабораторные работы.	-основные законы физики, химии, наук о Земле и биологии,	ния знаний на основе	
		2.Самостоятельная работа	-основы аналитической химии и химических методов анализа	оценки устного ответа на	
			- методы математического анализа и моделирования,	вопрос, доклада или рефе-	
			-методы теоретических и экспериментальных исследований	рата, защита лабораторных	
			Уметь:	работ, контрольного зада-	
			- применять методы математического анализа и моделирова-	ния, ответа на экзамене.	
			ния,		
			-применять методы теоретических и экспериментальных ис-		
			следований,		
			-приобретать новые математические и естественнонаучные		
			знания, используя современные образовательные и информа-		
			ционные технологии		
			Владеть:		
			- методами математического анализа и моделирования,		
			-методами теоретических и экспериментальных исследований		
			-методами приобретения новых математических и естествен-		
			нонаучных знаний, используя современные образовательные		
	1		и информационные технологии		

4. Оценочные средства текущего контроля успеваемости и сформированности компетенций

Текущий контроль успеваемости имеет целью оценить систематичность учебной работы обучающегося в течение семестра. *Текущий контроль (полусеместровый) обучающегося оценивается из расчета 100 баллов*. При этом учитывается посещаемость обучающимся лекций, лабораторных занятий, активность обучающегося на лабораторных занятиях, результаты промежуточных письменных и устных контрольных опросов, итоги контрольных работ (тестов), участие обучающихся в научной работе (например, написание рефератов, докладов, выступлений на научных конференциях и т.п.). Каждый компонент имеет соответствующий удельный вес в баллах.

4.1 Комплект разноуровневых заданий и задач для текущего контроля знаний по разделам программы

ВОПРОСЫ ДЛЯ КОНТРОЛЯ ЗНАНИЙ ОБУЧАЮЩИХСЯ ПО ТЕМАМ (РАЗДЕЛАМ) КУРСА

Тема 1. Введение в аналитическую химию. Качественный анализ катионов и анионов. Систематический и дробный анализ. Частные реакции и ход анализа смеси катионов и анионов.

Вопросы к устному опросу и собеседованию

- 1. Что является объектом химического анализа.
- 2. Дайте определение понятиям качественный и количественный анализ.
- 3. Реактивы, применяемые в химическом анализе. Квалификация реактивов. Хранение реактивов.
- 4. Методика анализа. Относительные и абсолютные методы. Чувствительность, избирательность и технологичность метолики.
- 5. Точностные характеристики методики анализа.
- 6. Аналитический сигнал. Полезный сигнал и сигнал фона. Контрольный (нулевой) опыт.
- 7. Методы выполнения качественного анализа: химические, физико-химические и физические.
- 8. Виды качественного анализа: макро-, полумикро-, микро- и ультрамикрометоды, сухой и мокрый виды анализа, микро-кристаллоскопия, капельный, хроматографический анализ, систематический и дробный анализ.
- 9. Схемы систематического качественного анализа: сульфидная, аммиачно-фосфатная и кислотно-основная.
- 10. Свойства элементов, используемые в качественном анализе. Связь аналитических свойств элементов с их положением в Периодической системе элементов.
- 11. Кислотно-основная схема систематического качественного анализа смеси катионов. Отношение катионов и анионов к разбавленным кислотам и основаниям. Кислотно-основная схема анализа катионов I VI аналитических групп. Состав групп.
- 12. Групповые реагенты. Частные реакции отдельных катионов.
- 13. Систематический анализ сложных смесей.
- 14. Хлорид-сульфатная схема систематического анализа анионов. Аналитические группы анионов. Частные реакции анионов.
- 15. Дробный анализ. Область применения. Специфические реакции катионов и анионов: выделение газа, образование осадка, колориметрические, люминесцентные, экстракционно-колориметрические, окрашивания пламени.
- 16. Анализ смесей сухих солей.

Контрольно-тренировочные задания

1. Опишите ход анализа следующих смесей ионов, докажите отсутствие в смеси других катионов и анионов из перечня, приведенного ниже. Напишите уравнения реакций, укажите эффект реакций. В составе контрольной задачи могут содержаться NH_4^+ , K^+ , Na^+ , Pb^{2+} ,

Ca²⁺, Al³⁺, Zn²⁺, Sn²⁺, Cr³⁺, Fe²⁺, Fe³⁺, Mn²⁺, Cu²⁺, Co²⁺, Ni²⁺, SO₄²⁻, Cl⁻, NO₃⁻.

1. K ⁺ , Ca ²⁺ , SO ₄ ²⁻	2. Fe ²⁺ , Fe ³⁺ , Mn ²⁺ , Cl ⁻	3. Na ⁺ , NH ₄ ⁺ , Ca ²⁺ , Cl
4. NH ₄ ⁺ , Pb ²⁺ , Ca ²⁺ , SO ₄ ²⁻	5. NH ₄ ⁺ , Mn ²⁺ , NO ₃ ⁻	6. K ⁺ , Ni ²⁺ , NO ₃ ⁻
7. Na ⁺ , Zn ²⁺ , Ca ²⁺ , Cl ⁻	8. Co ²⁺ , Ca ²⁺ , Cl ⁻ , NO ₃ ⁻	9. NH ₄ ⁺ , Cu ²⁺ , NO ₃ ⁻
10. Na ⁺ , Ca ²⁺ , NO ₃ -, Cl ⁻	11. Al ³⁺ , Co ²⁺ , Ca ²⁺ , Cl ⁻	12. K ⁺ , Ca ²⁺ , SO ₄ ²⁻ , NO ₃ ⁻
13. K ⁺ , NH ₄ ⁺ , Ca ²⁺ , SO ₄ ²⁻	14. Na ⁺ , Cu ²⁺ , NH ₄ ⁺ , NO ₃ ⁻	15. Na ⁺ , Mn ²⁺ , Ca ²⁺ , NO ₃ ⁻

- 2. Напишите в молекулярном и ионном видах уравнения реакций применяемые в качественном анализе для обнаружения ионов NH_4^+ , K^+ , Na^+ , Pb^{2+} , Ca^{2+} , Al^{3+} , Zn^{2+} , Sn^{2+} , Cr^{3+} , Fe^{2+} , Fe^{3+} , Mn^{2+} , Cu^{2+} , Co^{2+} , Ni^{2+} , SO_4^{2-} , Cl^- , NO_3^- , указав при этом:
- а) Какие реакции являются обратимыми и необратимыми,
- б) Какие из исходных и полученных соединений являются хорошо растворимыми, мало растворимыми, сильными и слабыми электролитами.
- 3. Составьте уравнения окислительно-восстановительных реакций в ионно-электронном виде. Укажите окислитель и восстановитель:

1)
$$\text{CrCl}_3 + \text{H}_2\text{O}_2 + \text{KOH} \rightarrow$$
 2) $\text{K}_2\text{SO}_3 + \text{KMnO}_4 + \text{H}_2\text{SO}_4 \rightarrow$ 3) $\text{I}_2 + \text{Na}_2\text{S}_2\text{O}_3 \rightarrow$ 4) $\text{Na}_2\text{S}_2\text{O}_3 + \text{I}_2 \rightarrow$ 5) $\text{MnSO}_4 + (\text{NH}_4)_2\text{S}_2\text{O}_8 + \text{H}_2\text{O} \rightarrow$ 6) $\text{Mn}(\text{NO}_3)_2 + \text{PbO}_2 + \text{HNO}_3 \rightarrow$ 7) $\text{MnSO}_4 + \text{NaBiO}_3 + \text{HNO}_3 \rightarrow$ 8) $\text{Cu} + \text{HNO}_3$ (конц.) \rightarrow 9) $\text{CuCl}_2 + \text{Na}_2\text{S}_2\text{O}_3 + \text{H}_2\text{O} \rightarrow$ 10) $\text{FeSO}_4 + \text{KMnO}_4 + \text{H}_2\text{SO}_4 \rightarrow$ 11) $\text{Cu} + \text{Hg}(\text{NO}_3)_2 \rightarrow$ 12) $\text{Fe} + \text{CuSO}_4 \rightarrow$ 13) $\text{Cr}_2(\text{SO}_4)_3 + \text{KMnO}_4 + \text{H}_2\text{O} \rightarrow$ 14) $\text{Bi}(\text{NO}_3)_3 + \text{K}_2[\text{Sn}(\text{OH})_4] + \text{KOH} \rightarrow$ 15) $\text{SO}_2 + \text{KMnO}_4 + \text{H}_2\text{O} \rightarrow$ 16) $\text{KI} + \text{K}_2\text{Cr}_2\text{O}_7 + \text{H}_2\text{SO}_4 \rightarrow$ 17) $\text{Cu} + \text{HNO}_3$ (конц.) \rightarrow 18) $\text{Cu} + \text{HNO}_3$ (разбавл.) \rightarrow

4. Составьте уравнения реакций, идущих с разрушением комплексных ионов, между следующими веществами:

$$[Ag(NH_3)_2]Cl + HNO_3 \rightarrow$$

$$[Cu(NH_3)_4]SO_4 + H_2SO_4 \rightarrow$$

- 5. Определите величину и знак заряда комплексообразователей и комплексных ионов в следующих комплексных солях, назовите их: $K_3[Fe(CN)_6]$, $K_4[Fe(CN)_6]$, $K_3[Co(NO_2)_6]$, $[Cr(H_2O)_6]Cl_3$.
- 6. Амфотерность. Какие из перечисленных гидроксидов взаимодействуют со щелочами: $Cu(OH)_2$, $Cr(OH)_3$, $Sn(OH)_2$, $Bi(OH)_3$, $Al(OH)_3$? Напишите молекулярные и ионные уравнения реакций.
- 7. Какова реакция среды водных растворов следующих солей: KI; Na₂S; NH₄Cl; Na₂CO₃; ZnSO₄. Укажите способы усиления и подавления гидролиза. Ответ поясните уравнениями реакций.

Тема 2. Закон действия масс. Химическое равновесие. Степень электролитической диссоциации. Константа диссоциации

Вопросы к устному ответу и собеседованию

- 1. Единицы количества вещества. Моль. Молярная масса. Молярный объем.
- 2. Способы выражения концентрации: молярная концентрация; массовая концентрация; объемная концентрация; доли и процентная концентрация.
- 3. Эквивалент, фактор эквивалентности, молярная концентрация эквивалента.
- 4. Скорость химической реакции. Закон действия масс.
- 5. Закон эквивалентов. Законы эквивалентов и действия масс как теоретическая основа химических методов анализа.

- 6. Равновесные системы. Закон действия масс в применении к равновесным системам.
- 7. Константа равновесия. Степень диссоциации. Условия смещения ионных равновесий.
- 8. Влияние одноименного иона.
- 9. Границы применимости закона действующих масс.

Контрольно-тренировочные задания

- 1. Рассчитайте pH и pOH 0,02 M раствора $NH_3 \cdot H_2O$ ($K_{\text{Д}}(NH_3 \cdot H_2O) = 1,8 \cdot 10^{-5}$).
- 2. $100 \text{ см}^3 \text{ 1 M}$ раствора $NH_3 \cdot H_2O$ разбавлено до 2,5 дм³. Вычислите рН полученного раствора. $Kд(NH_3 \cdot H_2O) = 1,8 \cdot 10^{-5}$.
 - 3. Вычислите pH и pOH 0,01 M раствора уксусной кислоты КД(CH₃COOH) = $1.8 \cdot 10^{-5}$.
 - 4. Как изменится рН чистой воды, если в 0,5 дм³ ее растворить 0,002 моль NaOH.
- 5. Какой объем раствора карбоната натрия с массовой долей 15 % ($\rho = 1,16 \text{ г/см}^3$) потребуется для приготовления 250 см³ 0,45 M раствора Na₂CO₃?
- 6. К 100 см³ 0,2 М раствора муравьиной кислоты прибавили 50 см³ формиата натрия HCOONa с концентрацией 0,05 моль/дм³. Рассчитайте pH буферного раствора. (К(HCOOH) = $1.8 \cdot 10^{-4}$).
 - 7. Вычислите концентрацию ионов H⁺ и CN⁻ с 0,01 M растворе, если $K_{\pi}(HCN) = 7,2 \cdot 10^{-7}$.
- 8. Концентрация ионов водорода в растворе равна $4 \cdot 10^{-4}$ моль/дм³. Вычислите рН и рОН раствора.
 - 9. Вычислите рН 0,003 М раствора соляной кислоты.
- 10. Вычислите рН 0,05 М раствора соляной кислоты с учетом влияния ионной силы раствора.

Тема 3. Состояние сильных электролитов в растворе. Диссоциация воды. Вычисление рН различных растворов. Гидролиз солей в химическом анализе. Буферные растворы. Вопросы к устному ответу и собеседованию

- 1. Равновесия в гомогенных системах. Растворы. Водные растворы.
- 2. Строение молекулы воды и продуктов гидратации растворенных веществ.
- 3. Современные представления о природе кислот и оснований.
- 4. Ионное произведение воды. Водородный показатель (рН).
- 5. Шкала рН. Протяженность шкалы рН.
- 6. Вычисление рН в растворах сильных кислот и сильных оснований.
- 7. Вычисление рН в растворах слабых кислот и оснований.
- 8. Вычисление рН в растворах гидролизующихся солей.
- 9. Вычисление рН в буферных растворах.
- 10. Гидролиз солей в химическом анализе.
- 11. Буферные системы и их использование в аналитической химии. Буферные системы в природе. Вычисление рН буферных растворов.
- 12. Протолитические равновесия. Важнейшие теории кислот и оснований.
- 13. Кислотно-основные свойства растворителей.
- 14. Константа автопротолиза. Амфолиты. Автопротолиз.
- 15. Протолитическое равновесие.
- 16. Ионная сила раствора. Коэффициент активности и его роль в представлении количественных отношений в аналитических системах.

- 1. Чему равны ионная сила, активные концентрации и коэффициенты активности ионов Al^{3+} и Cl^{-} в 0,0001 M растворе хлорида алюминия?
- 2. Чему равна активная концентрация иона водорода в растворе, содержащем в 1 дм 3 0,1 моль CH $_3$ COOH и 0,5 моль CH $_3$ COONa?
- 3. Рассчитайте рН раствора H₂SO₄ с массовой долей: 0,05%.
- 4. Рассчитайте рН раствора СН₃СООН с массовой долей 1%; 15% и 40%

- 5. Рассчитайте рН раствора аммиака с массовой долей 15 %.
- 6. Рассчитайте рН 0,01 М аммиачной буферной смеси, содержащей 50% аммиака.
- 7. В 250 см 3 0,05 М раствора НСООН растворили 1,7 г безводного формиата натрия. Рассчитайте рН буферной смеси.
- 8. В $400 \text{ cm}^3 0,1 \text{ M}$ раствора уксусной кислоты содержится 3,28 г безводного ацетата натрия. Рассчитайте pH раствора?
- 9. Рассчитайте рН 0,01 М ацетатных буферных смесей, содержащих равные количества ацетата натрия и уксусной кислоты и 33 % уксусной кислоты и 67 % ацетата натрия.
- 10. В 200 см³ 0,1 М раствора уксусной кислоты содержится 1,64 г безводного ацетата натрия. Рассчитайте рН буферного раствора ($K(CH_3COOH) = 1,8\cdot10^{-5}$).
- 11. Рассчитайте и постройте кривую титрования 0,1 М раствора гидроксида натрия 0,1 М раствором соляной кислоты. Укажите точку эквивалентности, скачок титрования, выберите индикатор, подходящий для фиксации точки эквивалентности.
- 12. Рассчитайте и постройте кривую титрования 0,1 М раствора гидрата аммиака 0,1 М раствором соляной кислоты. Укажите точку эквивалентности, скачок титрования, выберите индикатор, подходящий для фиксации точки эквивалентности.

Тема 4. Растворимость и константа растворимости (произведение растворимости). Последовательность образования осадков. Условия образования и растворения осадков. Влияние на растворимость осадков ионной силы раствора, одноименных ионов.

Вопросы к устному ответу и собеседованию

- 1. Равновесия в гетерогенной системе. Константа растворимости (произведение растворимости).
- 2. Вычисление растворимости малорастворимых соединений в воде в отсутствие конкурирующих процессов.
- 3. Влияние электролитов на растворимость малорастворимых соединений: солевой эффект,
- 4. Влияние электролитов на растворимость малорастворимого электролита: влияние одно-именного иона.
- 5. Влияние конкурирующих реакций на растворимость осадков (протолитические реакции, гидролиз, комплексообразование).
- 6. Зависимость процесса растворения от внешних факторов: температуры, давления.
- 7. Зависимость растворимости от свойств растворителя. Время достижения равновесия.
- 8. Применение правила произведения растворимости в анализе и его ограничения.
- 9. Осаждение. Образование, модификация и превращение осадков.
- 10. Условия выпадения осадков. Совместное осаждение.
- 11. Причины загрязнения осадков: адсорбция, окклюзия, сокристаллизация, изоморфное замещение. Факторы, влияющие на полноту осаждения. Коллоидные растворы. Коагуляция и пептизация.

- 1. Вычислите константу растворимости (произведение растворимости) иодида серебра AgI, если растворимость этой соли при 25° C равна $2,865\cdot10^{-6}$ г/дм³.
- 2. Вычислите растворимость оксалата кальция, если $K_S^o(CaC_2O_4) = 2,57 \cdot 10^{-9}$.
- 3. Пользуясь произведением растворимости AgCl и AgBr, определите, в каком из насыщенных растворов солей содержится больше ионов серебра. Ответ подтвердите расчетом.
- 4. Образуется ли осадок CaSO₄, если смешать равные объемы 0,2 н. раствора нитрата кальция и 0,02 н. раствора сульфата калия?
- 5. Выпадет ли осадок хлорида свинца при смешивании равных объемов 0,1 М растворов нитрата свинца и хлорида натрия?

- 6. На раствор, содержащий 0,1 моль/дм³ ионов Ba^{2+} и 0,01 моль/дм³ ионов Ca^{2+} , подействовали оксалатом аммония. Какой из катионов будет осаждаться первым?
- 7. К раствору, содержащему ионы Cl⁻ и CrO₄²⁻, концентрации которых равны 0,1 моль/дм³, прибавили по каплям раствор нитрата серебра. Какой осадок будет выпадать первым? Ответ подтвердите расчетом.
- 8. Произведение растворимости $SrSO_4$ равно $2.8\cdot 10^{-7}$, вычислите растворимость этой соли в моль/дм³ и г/дм³.
- 9. Вычислите интервал значений pH, при котором обеспечивается количественное разделение ионов Fe^{3+} и Mg^{2+} в виде гидроксидов.
- 10.Вычислите потерю массы и относительную погрешность за счет растворимости осадка оксалата кальция, если к 20 см 3 0,1 M раствора CaC1 $_2$ добавить 60 см 3 0,1 M раствора оксалата аммония.

Тема 5. Титриметрические методы анализа. Основные понятия титриметрии. Расчеты, связанные с приготовлением растворов и титрованием.

Вопросы к устному ответу и собеседованию

- 1. Предмет и задачи количественного анализа.
- 2. Количественное выражение химических законов, закономерностей и правил.
- 3. Основные понятия титриметрии. Стандартные растворы и стандартные вещества.
- 4. Расчеты, связанные с приготовлением растворов и титрованием. Молярная концентрация и молярная концентрация эквивалента (нормальность). Вычисление массы навески для приготовления раствора.
- 5. Сущность титриметрического метода анализа.
- 6. Виды титрования: прямое, обратное, косвенное.
- 7. Методы титриметрического анализа: кислотно-основное, комплексо- и комплексоно-метрическое, осадительное и окислительно-восстановительное титрование.
- 8. Кривые титрования. Скачок титрования. Определение точки эквивалентности.
- 9. Техника титрования. Методы пипетирования и отдельных навесок.
- 10. Способы приготовления стандартных растворов. Фиксаналы.

- 1. Как определить точную концентрацию раствора, приготовленного растворением 8 г гидроксида натрия в воде в мерной колбе вместимостью 0.5 дм³.
- 2. Как приготовить $0.5 \text{ дм}^3 0.2 \text{ н.}$ раствора серной кислоты из концентрированной кислоты $C(1/2H_2SO_4) = 18 \text{ моль/дм}^3 \text{ и определить ее точную концентрацию.}$
- 3. Рассчитайте pH раствора CH₃COOH с массовой долей 9% ($\rho = 1,01 \text{ г/см}^3$).
- 4. Рассчитайте массу навески $Na_2B_4O_7 \cdot 10H_2O$, необходимую для приготовления 250 см³ стандартного 0,02 н. раствора.
- 5. На титрование $20.0 \text{ см}^3 0.100 \text{ н.}$ раствора тетрабората натрия израсходовано 15.55 см^3 раствора соляной кислоты. Какова ее молярная концентрация.
- 6. На титрование 10,0 см³ 0,01 н. раствора щавелевой кислоты ушло 12,00 см³ раствора перманганата калия. Рассчитайте молярную концентрацию эквивалента этого раствора.
- 7. Рассчитайте массу навески ЭДТА, необходимую для приготовления 1 дм³ 0,05 н. раствора. Как установить его точную концентрацию?
- 8. Рассчитайте массу навески сульфата цинка, необходимую для приготовления $1~{\rm дm}^3$ $0.05~{\rm H.}$ раствора.
- 9. Навеску серебряного сплава, массой 1,7450 г растворили в азотной кислоте, раствор разбавили водой до 200 см^3 . На титрование $10,00 \text{ см}^3$ расходуется $11,75 \text{ см}^3$ 0,04672 н. раствора роданида аммония. Какова массовая доля серебра в сплаве?
- 10. Рассчитайте массу навески хлорида натрия NaCl, необходимую для приготовления $250~{\rm cm}^3~0.05$ н. раствора, необходимого для стандартизации раствора нитрата серебра.

Тема 6. Кислотно-основное титрование в водной среде. Кривые титрования. Окислительно-восстановительное титрование. Перманганатометрическое титрование.

Вопросы к устному ответу и собеседованию

- 1. Особенности титриметрии как метода анализа.
- 2. Кислотно-основное титрование в водной среде.
- 3. Погрешности титрования.
- 4. Кислотно-основное титрование. Ацидиметрия и алкалиметрия.
- 5. Титранты. Вещества, применяемые для установки титра раствора титранта.
- 6. Кислотно-основные индикаторы. Механизмы их действия. Интервал перехода. Индикаторные погрешности.
- 7. Приведите примеры использования окислительно-восстановительных процессов в аналитической химии.
- 8. Вычисление фактора эквивалентности окислителей и восстановителей в ОВР.
- 9. Обратимые окислительно-восстановительные реакции.
- 10. Уравнение Нернста.
- 11.Стандартный (нормальный) электродный потенциал. Факторы, определяющие величину реального электродного потенциала системы: ионная сила, кислотность, удаление или связывание одного компонента реакции.
- 12. Примеры использования окислительно-восстановительных реакций в качественном анализе.
- 13.Окислительно-восстановительное титрование.
- 14.Окислительно-восстановительные системы, применяемые в титриметрическом анализе.
- 15. Расчет потенциала системы в точке эквивалентности. Кривые титрования.
- 16.Индикаторы, применяемые для окислительно-восстановительного титрования, механизмы их действия.
- 17.Перманганатометрическое титрование. Применение перманганатометрического титрования в химическом анализе.
- 18. Приготовление и стандартизация растворов для перманганатометрических определений.
- 19. Иодометрическое тирование. Применение иодометрического титрования в химическом анализе. Приготовление и стандартизация растворов. Способы фиксации точки эквивалентности.

- 1. Рассчитайте кривую титрования 0,1 М раствора NaOH 0,1 М раствором HCl.
- 2. Рассчитайте кривую титрования слабой кислоты (CH_3COOH) сильным основанием (NaOH). Концентрации кислоты и щелочи 0,1~M.
- 3. Что такое точка эквивалентности? В какой области рН (кислой, щелочной, нейтральной) лежит точка эквивалентности при титровании раствора: а) сильной кислоты сильным основанием; б) слабой кислоты сильным основанием? Приведите примеры.
- 4. Что называется кривой титрования? Для какой цели строят кривые титрования? Приведите примеры.
- 5. Рассчитайте погрешность титрования 0,1 М раствора уксусной кислоты 0,1 М раствором гидроксида натрия по метиловому красному (рТ 5,2) и фенолфталеину (рТ 9).
- 6. Из навески гидроксида натрия массой 8,5 г, содержащего, кроме NaOH, 4,00% Na₂CO₃ и 8,00% H₂O, приготовили 1 л раствора. Определите молярную концентрацию эквивалента полученного раствора, если Na₂CO₃, нейтрализуется до NaHCO₃.
- 7. Навеску $H_2C_2O_4\cdot 2H_2O$ массой $0{,}6000$ г растворили в мерной колбе вместимостью $100{,}0$ мл. На титрование $20{,}00$ мл полученного раствора израсходовали $18{,}34$ мл NaOH. Определите молярную концентрацию раствора NaOH.
- 8. Какой объем раствора серной кислоты с массовой долей 9,3 % ($\rho = 1,05 \text{ г/см}^3$) потре-

- буется для приготовления 400 мл 0.035 M раствора H_2SO_4 ? Рассчитайте pH полученного раствора?
- 9. В 500 мл 0,1 М раствора уксусной кислоты содержится 1,64 г безводного ацетата натрия. Рассчитайте рН буферного раствора (КСН₃COOH = $1,8\cdot10^{-5}$).
- 10. Какой объем раствора карбоната натрия с массовой долей 15 % ($\rho = 1,16 \text{ г/см}^3$) потребуется для приготовления 250 мл 0,45 M раствора Na₂CO₃?
- 11.К 100 мл 0,2 М раствора муравьиной кислоты прибавили 50 мл 0,05 М раствора формиата натрия. Рассчитайте рН буферного раствора.
- 12.Составьте уравнения окислительно-восстановительных реакций в ионно-электронном виде. Укажите окислитель и восстановитель:

```
\begin{aligned} Na_2S_2O_3 + I_2 \to \\ FeSO_4 + KMnO_4 + H_2SO_4 \to \\ Cu + Hg(NO_3)_2 \to \\ CrCl_3 + H_2O_2 + NaOH \to \\ Fe + CuSO_4 \to \\ Cr_2(SO_4)_3 + KMnO_4 + H_2O \to \\ Bi(NO_3)_3 + K_2[Sn(OH)_4] + KOH \to \\ MnSO_4 + (NH_4)_2S_2O_8 + H_2O \to \\ Mn(NO_3)_2 + PbO_2 + HNO_3 \to \\ MnSO_4 + NaBiO_3 + HNO_3 \end{aligned}
```

- 13. Рассчитайте массу навески $K_2Cr_2O_7$, необходимую для приготовления 1 дм³ 0,02 н. раствора.
- 14. Вычислите массу навески кристаллогидрата оксалата аммония $(NH_4)_2C_2O_4\cdot H_2O$, необходимую для приготовления 500 см³ 0,1 н. раствора.
- 15. Вычислите массу навески перманганата калия, необходимую для приготовления 5 дм³ 0,02 н. раствора.
- 16. В мерной колбе вместимостью 250 см 3 растворили 1,2608 г щавелевой кислоты $H_2C_2O_4 \cdot 2H_2O$. На титрование 20 см 3 этого раствора было израсходовано 20,62 см 3 раствора перманганата калия. Вычислите молярную концентрацию эквивалента раствора перманганата калия.

Тема 7. Гравиметрические методы анализа

Вопросы к устному ответу и собеседованию

- 1. Гравиметрия. Сущность метода.
- 2.Взвешивание. Аналитические весы.
- 3. Осаждаемая и гравиметрическая формы. Условия выпадения осадков и получения чистых осадков строго определенного состава.
- 4. Фильтрование, промывание, высушивание и прокаливание осадка.
- 5. Реагенты для гравиметрии.
- 6.Понятие о методе отгонки.
- 7.Особенности гравиметрии как метода анализа.
- 8. Аналитическая сервисная служба. Технический контроль.
- 9. Пробоотбор. Пробоподготовка. Отбор проб различных веществ.
- 10.Получение лабораторной пробы.
- 11. Потери определяемого вещества и загрязнение пробы в процессе ее отбора и хранения.
- 12. Разложение пробы. «Мокрые» способы разложения пробы.
- 13. «Сухие» способы разложения пробы.
- 14. Применение МВИ в процессах пробоподготовки.
- 15. Причины погрешностей при разложении пробы.

- 1.Из раствора бромида натрия осадили бром в виде бромида серебра. После высушивания масса осадка была 0,5020 г. Вычислите содержание бромида натрия в растворе.
- 2.Вычислите массовую долю NaCl в техническом хлориде натрия, если из навески 0,4500 г получили осадок хлорида серебра массой 0,6280 г.
- 3.В навеске 0,1341 г хлорида калия, загрязненного хлоридом натрия, определяли содержание калия, осаждением в виде КСlO₄, масса которого оказалась равна 0,2206 г. Вычислите процентное содержание КСl в исследуемом образце хлорида калия.
- 4.Какой объем (см 3) 0,25 M раствора оксалата аммония потребуется для осаждения Ca^{2+} из раствора, полученного растворением 0,7 г $CaCO_3$?
- 5.Вычислите массовую долю кристаллизационной воды в кристаллогидрате $BaCl_2 \cdot 2H_2O$.
- 6.Вычислите массу навески карбоната кальция, необходимую для получения осадка СаО массой 0,3 г.
- 7.При определении алюминия, осаждаемого в виде гидроксида, требуется, чтобы раствор содержал около 0.05 г алюминия. Вычислите массу навески $Al_2(SO_4)_3 \cdot 18H_2O$, необходимую для такого определения.
- 8. Навеску серебряного сплава, массой 1,7450 г растворили в азотной кислоте, раствор разбавили водой до 200 см^3 . На титрование $10,00 \text{ см}^3$ расходуется $11,75 \text{ см}^3$ 0,04672 н. раствора роданида аммония. Какова массовая доля серебра в сплаве?

Темы лабораторных работ

- 1. Техника безопасности и приемы работы в аналитической лаборатории. Приемы работы полумикрометодом.
 - 2. Качественный анализ катионов дробным методом.
 - 3. Качественный анализ анионов дробным методом.
 - 4. Качественный анализ смеси сухих солей.
- 5. Построение кривых титрования сильной кислоты щелочью и наоборот. Освоение техники пипетирования и титрования.
 - 6. Расчет и анализ кривой титрования соляной кислоты гидроксидом натрия.
- 7. Приготовление и стандартизация растворов для аналитических работ. Стандартизация раствора соляной кислоты по тетраборату натрия.
- 8. Контрольная задача. Определение гидроксида натрия в растворе неизвестной концентрации.
 - 9. Определение гидроксида и карбоната натрия в совместном присутствии в растворе.
- 10. Стандартизация раствора гидроксида натрия. Определение кислотности пищевых продуктов.
- 11. Приготовление и стандартизация раствора перманганата калия. Определение железа в соли Мора.
 - 12. Определение кристаллизационной воды в кристаллогидрате хлорида бария.

Примерные варианты контрольной работы по дисциплине Вариант 1

- 1. В 500 мл раствора содержится 2,6578 г Na₂CO₃. Вычислить молярную концентрацию эквивалента раствора Na₂CO₃, если при его нейтрализации образуется CO₂.
- 2. Какой объем раствора серной кислоты с массовой долей 9,3 % ($\rho = 1.05 \text{ г/см}^3$) потребуется для приготовления 40 мл 0,35 M раствора H_2SO_4 ?
- 3. Рассчитать pH и pOH 0,03 M раствора $NH_3 \cdot H_2O$ (K($NH_3 \cdot H_2O$) = 1,8·10⁻⁵).
- 4. Что такое точка эквивалентности? В какой области рН (кислой, щелочной, нейтральной) лежит точка эквивалентности при титровании раствора:
- а) сильной кислоты сильным основанием;
- б) слабой кислоты сильным основанием? Приведите примеры.

5. В 200 мл 0,1 М раствора уксусной кислоты содержится 1,64 г безводного ацетата натрия. Рассчитайте рН буферного раствора ($K(CH_3COOH) = 1,8\cdot10^{-5}$).

Вариант 2

- 1. Навеску $H_2C_2O_4 \cdot 2H_2O$ массой $0{,}6000$ г растворили в мерной колбе вместимостью $100{,}0$ мл. Вычислите молярную концентрацию эквивалента полученного раствора.
- 2. Какой объем раствора карбоната натрия с массовой долей 15 % ($\rho = 1,16 \text{ г/см}^3$) потребуется для приготовления 250 мл 0,45 M раствора Na_2CO_3 ?
- 3. Рассчитайте [H $^+$] и pH 0,002 M раствора муравьиной кислоты HCOOH (К(HCOOH) = $1.8 \cdot 10^{-4}$).
- 4. Что называется кривой титрования? Для какой цели строят кривые титрования?
- 5. К 100 мл 0,2 М раствора муравьиной кислоты прибавили 50 мл формиата натрия HCOONa с концентрацией 0,05 моль/л. Рассчитайте pH буферного раствора. (К(HCOOH) = $1.8 \cdot 10^{-4}$).

Вариант 3

- 1. Рассчитайте массу навески $Na_2B_4O_7 \cdot 10H_2O$, необходимую для приготовления 250,0 мл 0,15 н. раствора.
- 2. Для приготовления 500 мл раствора было взято 20,00 мл хлороводородной кислоты с ω = 36 %, ρ = 1,19 г/см³. Вычислите молярную концентрацию полученного раствора.
- 3. Рассчитайте [H $^+$] и pH 0,2 M раствора уксусной кислоты CH₃COOH (K(CH₃COOH) = 1,8·10⁻⁵).
- 4. Почему при кислотно-основном титровании рН в точке эквивалентности не всегда равен 7? Приведите примеры.
- 5. К 50 мл 0,1 М раствора уксусной кислоты прибавили 50 мл 0,5 М раствора ацетата натрия. Рассчитайте рН буферного раствора. ($K(CH_3COOH) = 1,8\cdot10^{-5}$).

Вариант 4

- 1. Навеску щелочи массой 0,5341 г, содержащей 92 % NaOH и 8 % индифферентных примесей, растворили и довели до метки в мерной колбе вместимостью 100,0 мл. Вычислите молярную концентрацию полученного раствора.
- 2. Как приготовить 1000 мл 0,05 M раствора уксусной кислоты из ее 45 %-ного раствора ($\rho = 1,03~\text{г/cm}^3$).
- 3. Рассчитайте [H $^+$] и pH 0,005 M раствора ацетата натрия CH₃COONa (K(CH₃COOH) = 1,8·10⁻⁵).
- 4. Какими способами подбирают индикаторы при кислотно-основном титровании?
- 5. В 500 мл 0,02 М раствора $NH_3 \cdot H_2O$ растворено 3,36 г хлорида аммония. Рассчитайте pH буферного раствора. ($K(NH_3 \cdot H_2O) = 1,8 \cdot 10^{-5}$).

Примеры тестовых заданий по дисциплине Вариант 1

- 1. Закончите предложение: катионы натрия окрашивают пламя газовой горелки в...
- 1) изумрудно зелёный цвет
- 2) голубой цвет
- 3) карминово-красный цвет
- *4) интенсивно жёлтый цвет
- 2. Закончите предложение: Открытию иона калия при помощи $Na_3[Co(NO_2)_6]$ не мешает...
 - *1) Na₂SO₄
- 2) NH₄Cl
- 3) H₂SO₄
- 4) NaOH
- 3. Соль белого цвета, хорошо растворяется в воде, не окрашивает пламя газовой горелки. При добавлении к раствору этой соли раствора нитрата серебра выпадает белый творожистый осадок, растворимый в конц. $NH_3 \cdot H_2O$; при добавлении к соли раствора гидроксида калия выделяется газ с неприятным запахом, под воздействием которого влажная универсальная индикаторная бумажка окрашивается в цвет, соответствующий $pH \sim 9$. Формула соли...

- 1) KCl 2) NH₄NO₃ *3) NH₄Cl 4) NaCl.
- 4. 500 см³ раствора серной кислоты с концентрацией 0,10 моль/дм³ следует готовить в
- 1) химическом стакане вместимостью $> 500 \text{ см}^3$;
- 2) мерном цилиндре;
- *3) мерной колбе вместимостью 500 см³;
- 4) большой мензурке
- 5. Перед выполнением титриметрического определения титрантом следует ополоснуть.
 - 1) коническую колбу для титрования;
 - 2) *бюретку;
 - 3) мерную колбу;
 - 4) мерную пипетку.
- 6. Какое уравнение является математическим выражением константы равновесия для реакции: 3NH₄SCN + FeCl₃ ≠ Fe(SCN)₃ + 3NH₄Cl

*1)
$$K = \frac{[Fe(SCN)_3][NH_4Cl]^3}{[NH_4SCN]^3[FeCl_3]}$$
3) $K = \frac{[NH_4SCN]^3[FeCl_3]}{[Fe(SCN)_3][NH_4Cl]^3}$
7. Найдите соответствие между о

2)
$$K = \frac{[Fe(SCN)_3][3NH_4Cl]}{[3NH_4SCN][FeCl_3]}$$

3)
$$K = \frac{\left[NH_4SCN\right]^3 \left[FeCl_3\right]}{\left[Fe(SCN)_3\right] \left[NH_4Cl\right]^3}$$

4)
$$K = \frac{\left[3NH_4SCN\right]\left[FeCl_3\right]}{\left[Fe(SCN)_3\right]\left[3NH_4Cl\right]}$$

7. Найдите соответствие между формулами, по которым вычисляется концентрация ионов водорода в растворе, и веществами:

**1) NaOH:

- *2) CH₃COOH;
- ***3) CH₃COONa;
- ****4) NH₃·H₂O + NH₄Cl

*a)
$$[H^+] = \sqrt{K_a \cdot C(\kappa u c \pi)};$$
 ***6) $[H^+] = \sqrt{\frac{10^{-14} \cdot K_a}{C(co\pi u)}};$ **B) $[H^+] = \frac{10^{-14}}{C(oc\pi h)};$

$$\Gamma$$
) [H⁺] = $\frac{10^{-14} \cdot C(conu)}{K_b \cdot C(och.)}$

8. 9,77 г гидроксида калия, содержащего 14% индифферентных примесей, растворили в воде и разбавили в мерной колбе до 100 см³. Молярная концентрация полученного раствора:

- 2. 1,8 моль/дм 3 ; 3. 15 моль/дм 3 ; 4. 18 моль/дм 3 . *1.1.5 моль/дм³ :
- 9. Какой объём (см 3) серной кислоты с концентрацией 0,1 моль/дм 3 необходим для нейтрализации 50,0 см³ раствора гидроксида калия с концентрацией 0,05 моль/дм³? *4) 12,5 1) 50,0 2) 25,0 3) 37.5
 - 10. Установите соответствие между математической формулой и её названием

*1)
$$E = E_0 + \frac{RT}{nF} \cdot lg \frac{[o\kappa c]}{[pe\delta]}$$
;

**2)
$$lgf = -AZ^2 \frac{\sqrt{\mu}}{1 + \sqrt{\mu}}$$
;

***3)
$$\alpha = \sqrt{\frac{K}{C}}$$
;

****4)
$$K = \frac{[C]^p \cdot [D]^q}{[A]^m \cdot [B]^n}$$

а) Формула Дебая – Хюккеля **в) Закон действия масс

*** б) Закон разбавления Оствальда *г) Формула Нернста

11. Какая концентрация сульфат-иона в растворе обеспечит образование осадка сульфата бария при концентрации Ba^{2+} $1\cdot 10^{-4}$ моль/дм 3 . $K^{\circ}_s(BaSO_4) = 1\cdot 10^{-10}$? 1) $1\cdot 10^{-10}$ 2) $1\cdot 10^{-8}$ *3) $1\cdot 10^{-6}$ 4) Осадок образуется при любой концентрации сульфат-иона, так как сульфат бария малорастворимое вещество
12. Как влияет на растворимость AgCl 0,2 M раствор KNO ₃ ?
13. При добавлении к раствору муравьиной кислоты формиата натрия: 1) усиливается диссоциация кислоты; 2) усиливается диссоциация соли; *3) подавляется диссоциация кислоты; 4) подавляется диссоциация соли.
14. В какой из приведенных реакций железо является восстановителем:
15. Для реакции $MnO_4^- + 8H^+ + 5\bar{e} = Mn^{2+} + 4H_2O$ уравнение Нернста имеет вид: 1) $E = E_0 + \frac{0,058}{5} lg \frac{[MnO_4^-]}{[Mn^{2+}] \cdot [H^+]^8}$ *2) $E = E_0 + \frac{0,058}{5} lg \frac{[MnO_4^-] \cdot [H^+]^8}{[Mn^{2+}]}$ 3) $E = E_0 + \frac{0,058}{5} lg \frac{[MnO_4^-]}{[Mn^{2+}]}$ 4) $E = E_0 + \frac{0,058}{5} lg \frac{[Mn^{2+}] \cdot [H^+]^8}{[MnO_4^-]}$
16. Для фиксации точки эквивалентности при титровании раствора CH ₃ COOH раствором NaOH *1) следует использовать фенолфталеин; 2) следует использовать метиловый оранжевый; 3) можно использовать оба индикатора; 4) нельзя использовать фенолфталеин.
17. При 4 измерениях объёма раствора по бюретке получено среднее арифметическое значение 9,15452 см ³ . Результат должен быть представлен следующим образом: см ³ 1) 9,1545 2) 9,155 *3) 9,15 4) 9,2
18. В арбитражном анализе доверительную вероятность (P) принимают равной 10,90 2)0,95 *3)0,99 4)1,00
19. При определении содержания хрома(VI) в растворе получены следующие значения (%): $x_1 = 4,61$; $x_2 = 4,84$; $x_3 = 4,64$ и $x_4 = 4,80$. Результат определения: 1) 4,7225 2) 4,723 3) 4,72 *4) 4,72±0,18

	20. Какое количество (моль) Ca^{2+} содержится в растворе, на титрование которого расходуется 5,80 см ³ 0,05 моль/дм ³ раствора ЭДТА?					
ходуется 1)	я 5,80 см ³ 0,0) 11,6·10 ⁻³	2) 2,9·10 ⁻¹	твора ЭДТА? 3) 5,8	10-3	*4) 2,9·10 ⁻⁴	
1. 1)) Уксусная к	ещество, из кото ислота ит натрия	2) Молоч	ная кислота		раствор.
2. Вычислите молярную концентрацию раствора уксусной кислоты, в $100~{\rm cm}^3$ которого содержится $0,12~{\rm r}$ кислоты.						
_	0,20		3) 0,010	*4)0,0)20	
		да не относится ора 2) Бюр				Мерная колба
4. 1) 3)	. Какая реакі) 2I ⁻ - 2e → I) Cu ²⁺ + 4NH	ция находится 12 $I_3 \rightarrow [Cu(NH_3)_4]$	в основе мето, 2) А 2 ²⁺ *4)	дов кислотно $Ag^+ + Cl^- \rightarrow Ag^+ + OH^- \rightarrow Ag^- + OH^- + OH^- \rightarrow Ag^- + OH^- + $	o-основного 1 AgCl H ₂ O	гитрования?
*	. Укажите си 1) NH ₃ ·H ₂ O -) KOH + H ₂ S	+ HCl	2) F	вивалентнос ICl + NaOH NaOH + CH3O		в кислой среде.
ции котс	орого K = 1·1		_	_		константа иониза-
		оит действие ау окраску руют окраску			раску раску	
растворо		тарной кислоть нислите израсх 2) 4,10			$ca (cm^3).$	рована 0,1050 М
F		техиометрическ $SO_4 + H_2SO_4 \rightarrow 1$ 3) 5	•	ент перед ок) 10	ислителем в ј	реакции
	25,00 см ³ ра					грацией 0,100 н. за- раствора перманга-
		*2) 0,080	3) 0,03	2	4) 0,010	
	аната калия,	з каком объеме содержащего (ампулы фиксанала пучения 0,02 н.
) 1000	2) 2000	*3) 5000		4) 500	
	2. Какой ион 1) Г; Е° 1₂/21⁻				ереде? E°Cr ₂ O мn ²⁺ = + 1,51	$27^{2-}/2Cr^{3+} = +1,33 \text{ B}$

	3) Cl ⁻ ; E ^o Cl ₂ /	$2C1^{-} = +1,36$	В	4) Br ⁻ ;	E ^o BrO ₃ -/Br	= + 1,45 B	
	13. Сколько H ₂ SO ₃ + I ₂ +				ель в реакі	ции	
		2) 5	3) 1	*4) 2	2		
	14. Укажите1) Крахмал,3) Дифенила	лакмус	•	/ 1	иохромов пуоресцеи:	ый черный Т, мурексид н, эозин	
3.5.21	15. Укажите	среду, в кот	орой возм	иожно ком	плексоном	иетрическое определение Ca ²⁺ и	
Mg^{2+} .	1) Кислая	2) Слабокі	ислая	*3) Щело	ная	4) Нейтральная	
	16. Какой со *1) 1 : 2			омплексов : 3	в металлов 4) 1 : 4	с ЭДТА (Трилоном Б)?	
ЭДТА				фиксанала		ба для приготовления раствора щего 0,1 моль вещества?	
	18. В какой и 1) Изумрудн 3) Интенсив	о-зеленый	*2)			сатионы летучих солей калия? й	
	ю реактива Na гической груп	13[Co(NO ₂) ₆] пы?	при выпо	олнении си	стематиче	аружению катиона калия с по- еского анализа катионов первой	
	*1) Na ₂ SO ₄	2) H ₂ SO ₄	4 3)	NH ₄ Cl	4) NaO	H	
зульта за						,48% серебра, был получен рероведённого анали-	
	1) Получен г	правильный з	результат	*2) Po	езультат за	анижен	
	3) Результат	завышен		4) Сис	тематичес	кой погрешности нет	
Прим	ерные темы	рефератов і	10 дисциі	ілине			
	1. Тест-методы в экологическом анализе.						
	2. Спектрофотометрические методы анализа.						
	3. Органические реагенты в аналитической химии.						
	4. Тонкослойная хроматография как метод анализа. 5. ААС и её применение для определения тяжёлых металлов.						
					жёлых ме	галлов.	
	6. Ионометр	ический мет	ол анапиз	เล			

- 6. Ионометрический метод анализа.
- 7. Бумажная хроматография как метод анализа.
- 8. Масс-спектрометрия органических соединений.
- 9. Методы определения сульфат-иона.
- 10. Ионометрические методы анализа.
- 11. Методы определения нитрит-иона.
- 12. Индикаторы в кислотно-основном титровании и механизмы их действия.
- 13. Индикаторы в титриметрических методах определении я металлов и механизмы их действия.
 - 14. Случайные погрешности результата на примере гравиметрического и титриметри-

ческого методов анализа.

- 15. ТСХ как метод определения ионов и веществ.
- 16. СПАВ и методы их определения.
- 17. Методы обнаружения и определения алюминия.
- 18. Маскирование как метод повышения селективности анализа.
- 19. Микроволновое излучение в неорганическом анализе.
- 20. Газо-жидкостная хроматография.
- 21. Методы анализа природной воды.
- 22. Методы анализа пищевых продуктов.
- 23. Методы определения тяжелых металлов в окружающей среде.
- 24. Жидкостная распределительная хроматография.
- 25. Методы анализа сточных вод.

Форма отчетности: защита реферата

Контрольные вопросы и задачи к экзамену по дисциплине «Аналитическая химия»

Вопросы

- 1. Аналитическая химия как наука. Значение аналитической химии для развития науки и техники. Химический анализ. Объекты анализа. Качественный и количественный анализ. Предмет и задачи качественного и количественного анализа.
- 2. Способы выражения концентрации растворов: молярная концентрация; молярная концентрация эквивалента; массовая доля (процентная концентрация). Эквивалент. Молярная масса эквивалента. Фактор эквивалентности.
 - 3. Закон эквивалентов и его применение в химическом анализе.
- 4. Закон действия масс как теоретическая основа химических методов анализа. Скорость химической реакции. Равновесные системы. Константа равновесия.
- 5. Слабые электролиты. Степень электролитической диссоциации. Закон разбавления Оствальда. Условия смещения ионных равновесий. Вычисление рН в растворах слабых кислот и оснований.
- 6. Водные растворы сильных электролитов. Ионная сила раствора. Активность. Коэффициент активности и его роль в представлении количественных отношений в аналитических системах. Расчет величин коэффициентов активности.
- 7. Ионное произведение воды. Водородный показатель рН. Шкала рН. Протяженность шкалы рН. Вычисление рН различных растворов.
- 8. Гидролиз солей. Буферные системы и их значение в аналитической химии. Расчет рН буферных систем: теория, примеры. Буферные системы в природе.
- 9. Равновесие в гетерогенной системе. Константа растворимости. Правило произведения растворимости. Растворимость малорастворимых соединений в воде в отсутствие конкурирующих процессов. Условия образования и растворения осадков.
- 10. Равновесие в гетерогенной системе. Константа растворимости. Правило произведения растворимости. Влияние одноименного иона на растворимость малорастворимого электролита. Приведите примеры.
- 11. Равновесие в гетерогенной системе. Константа растворимости. Правило произведения растворимости. Влияние сильных электролитов на растворимость малорастворимых соединений (солевой эффект). Приведите примеры.
- 12. Качественный анализ. Задачи качественного анализа. Методы выполнения качественного анализа: химические, физико-химические и физические. Виды качественного анализа: макро-, полумикро-, микро- и ультрамикрометоды, сухой и мокрый виды анализа, микрокристаллоскопия, капельный и хроматографический анализ, систематический и дробный анализ.
- 13. Кислотно-основная схема систематического качественного анализа катионов. Свойства катионов, используемые в качественном анализе. Приведите примеры.

- 14. Хлорид-сульфатная схема систематического анализа анионов. Аналитические группы анионов. Групповые реагенты. Частные реакции анионов. Приведите примеры.
- 15. Титриметрический анализ. Сущность метода. Виды титрования: прямое, обратное, титрование заместителя. Методы титриметрического анализа: кислотно-основное, комплексонометрическое, осадительное, окислительно-восстановительное.
- 16. Кислотно-основное титрование. Точка эквивалентности. Индикаторы кислотно-основного титрования.
- 17. Кривая титрования сильной кислоты щелочью. Точка эквивалентности. Скачок титрования. Выбор индикатора для фиксации точки эквивалентности.
- 18. Кривая титрования щелочи сильной кислотой. Точка эквивалентности. Скачок титрования. Выбор индикатора для фиксации точки эквивалентности.
- 19. Вычисления в титриметрическом анализе. Стандартные растворы. Измерительная посуда для титриметрического анализа.
 - 20. Способы определения точной концентрации кислот.
 - 21. Способы определения точной концентрации щелочей.
- 22. Окислительно-восстановительные процессы в аналитической химии. Уравнение Нернста. Перманганатометрическое титрование.
- 23. Комплексонометрическое титрование. Применение комплексонометрического титрования в анализе объектов окружающей среды.
- 24. Гравиметрия. Сущность метода. Понятие о методах отгонки осаждения. Осаждаемая и гравиметрическая формы. Условия выпадения осадков и получения чистых осадков строго определенного состава. Особенности гравиметрии как метода анализа.
 - 25. Пробоотбор и пробоподготовка.

Задачи. Качественный анализ

Предложите ход анализа смесей сухих солей, содержащих перечисленные ниже катионы и анионы. Изложите ход анализа, опишите наблюдаемые эффекты и напишите уравнения реакций, с помощью которых можно определить катионы и анионы, содержащиеся в смеси:

- 1) нитрат, хлорид и сульфат аммония;
- 3) сульфаты натрия и алюминия;
- 5) хлориды аммония и марганца;
- 7) нитраты аммония и меди;
- 9) сульфаты аммония и железа(III);
- 11) сульфаты железа(II) и железа(III);
- 13) сульфаты марганца и цинка;
- 15) хлориды натрия и никеля;
- 17) нитраты аммония и алюминия;
- 19) хлориды натрия и меди;
- 21) сульфаты натрия и никеля;
- 23) хлориды кобальта и калия;
- 25) нитраты аммония, натрия и калия.

- 2) нитраты натрия и цинка;
- 4) сульфаты аммония и железа(II);
- 6) хлориды никеля и кальция;
- 8) нитраты свинца и кобальта;
- 10) сульфаты алюминия и меди;
- 12) хлориды аммония и меди;
- 14) сульфаты марганца и меди;
- 16) нитраты хрома и меди;
- 18) сульфаты калия и алюминия;
- 20) нитраты аммония и свинца;
- 22) хлориды аммония и алюминия;
- 24) хлорид натрия и сульфат цинка:

Докажите, что в составе смеси не содержатся другие катионы и анионы из перечня: (катионы): NH_4^+ , K^+ , Na^+ , Pb^{2+} , Ca^{2+} , Al^{3+} , Zn^{2+} , Sn^{2+} Cr^{3+} , Fe^{2+} , Fe^{3+} , Mn^{2+} , Cu^{2+} , Co^{2+} , Ni^{2+} и (анионы): SO_4^{2-} , Cl^- , NO_3^- . Если для доказательства используются цвет кристаллов и растворов, реакции окрашивания пламени, групповые реагенты и т.п., то эти уравнения реакций писать не нужно.

Задачи. Количественный анализ

- 1. Определите массу H_2SO_4 , содержащуюся в 500 см³ 0,2 н. раствора кислоты.
- 2. Рассчитайте массу гидроксида калия, необходимую для приготовления 500 см³ 0,5 М раствора.

- 3. Определите молярную концентрацию и молярную концентрацию эквивалента серной кислоты, если в 500 см³ раствора содержится 14,7 г H₂SO₄.
- 4. Вычислите массовую долю NaCl в техническом хлориде натрия, если из навески 0,4500 г получили осадок хлорида серебра массой 0,6280 г.
- 5. На титрование 15,00 см³ раствора серной кислоты израсходовали 18,20 см³ 0,0564 М раствора КОН. Какова молярная концентрация эквивалента раствора H₂SO₄.
- 6. Константа диссоциации бинарного электролита равна 1·10⁻⁴. При какой концентрации степень его диссоциации достигает 3 %?
- 7. $100 \text{ см}^3 \text{ 1 M}$ раствора $NH_3 \cdot H_2O$ разбавлено до 2 дм³. Вычислить pH полученного раствора. $K_{\pi}(NH_3 \cdot H_2O) = 1,8 \cdot 10^{-5}$.
 - 8. Вычислите pH и pOH 0,02 M раствора уксусной кислоты $K_{II}(CH_3COOH) = 1,8 \cdot 10^{-5}$.
 - 9. Как изменится рН чистой воды, если в 0,5 дм³ ее растворить 0,005 моль NaOH.
- 10. Вычислите во сколько раз растворимость $BaSO_4$ в 0,01 M растворе $BaCl_2$ меньше, чем в чистой воде. (K_S °($BaSO_4$)= 1,1·10⁻¹⁰).
- 11. Сколько ε BaCrO₄ содержится в 500 см³ насыщенного раствора этой соли, если константа растворимости (произведение растворимости) ее при 25°C K_S ° = 2,4·10⁻¹⁰?
- 12. Образуется ли осадок при смешивании равных объемов 0,001 M растворов хлорида стронция и сульфата калия. K_s °(SrSO₄) = 3,2·10⁻⁷.
- 13. Вычислите активные концентрации (*a*) ионов Fe^{3+} и SO_4 ²⁻ в 0,001 M растворе $Fe_2(SO_4)_3$.
- 14. Вычислите ионную силу и активность ионов Al^{3+} и Cl^{-} в растворе хлорида алюминия с концентрацией 0,001 моль/дм³.
- 6. 15. Рассчитайте объем соляной кислоты с концентрацией 12 моль/дм³, необходимый для приготовления 500 см³ раствора с концентрацией 0,25 моль/дм³.
- 16. В 250 см³ 0,05 М раствора НСООН растворили 3,4 г безводного формиата натрия. Рассчитайте рН буферной смеси. $K_{\text{Д}}(\text{HCOOH}) = 1,8 \cdot 10^{-4}$.
- 17. Вычислите молярную концентрацию и молярную концентрацию эквивалента серной кислоты, если титрование $15.0~{\rm cm}^3$ ее раствора израсходовано $10.35~{\rm cm}^3$ КОН с концентрацией $0.250~{\rm моль/дm}^3$.
 - 18. Рассчитайте рН 0,5%-ной серной кислоты.
- 19. В 500 см³ 0,1 М раствора уксусной кислоты содержится 1,64 г безводного ацетата натрия. Рассчитайте pH раствора? $K_{\text{Д}}(\text{CH}_{3}\text{COOH}) = 1,8\cdot10^{-5}$.
- 20. Как определить точную концентрацию раствора, приготовленного растворением 8 г гидроксида натрия в воде в мерной колбе вместимостью 0,5 дм³. Можно ли такой раствор считать стандартным. Как определить его точную концентрацию.
- 21. Как приготовить 0.5 дм³ 0.2 н. раствора серной кислоты из концентрированной кислоты $C(1/2H_2SO_4) = 18$ моль/дм³ и определить ее точную концентрацию.
 - 22. Рассчитайте pH раствора CH₃COOH с массовой долей 9% ($\rho = 1.01 \text{ г/см}^3$).
- 23. Рассчитайте массу навески $Na_2B_4O_7 \cdot 10H_2O$, необходимую для приготовления 250 см³ стандартного 0,02 н. раствора.
- 24. На титрование 20,0 см³ 0,100 н. раствора тетрабората натрия израсходовано 15,55 см³ раствора соляной кислоты. Какова ее молярная концентрация.
- 25. На титрование 10,0 см³ 0,01 н. раствора щавелевой кислоты ушло 12,00 см³ раствора перманганата калия. Рассчитайте молярную концентрацию эквивалента этого раствора.

5. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Система университетского образования базируется на рациональном сочетании нескольких видов учебной деятельности, в том числе лекций, лабораторных занятий и самостоятельной работы обучающихся.

Самостоятельная работа студентов направлена на увеличение объема знаний в области актуальных проблем геохимии и реализацию возможностей использования знаний на практике.

Самостоятельная работа обучающихся предполагает работу с дополнительными информационными источниками, самостоятельными исследованиями, а также работу с электронными источниками.

Использование разнообразных типов вопросов в контрольных заданиях позволяет проверить их знания. Такие контрольные позволяют проверить закрепление теоретического материала и решение задач, а написание и разработка реферативных тем позволяет определить глубину знаний в области аналитической химии, и способность обучающимся свободно оперировать специальной терминологией ее разделов

Программа освоения дисциплины предусматривает работу на лекциях, выполнение лабораторных работ, тестирование, выполнение контрольной работы, опрос и собеседование, подготовку и защиту реферата.

Оценочные средства текущего контроля успеваемости и сформированности компетенций

Критерии балльно - рейтинговой оценки знаний

Итоговая оценка знаний обучающихся по аналитической химии в 4 семестре составляет 100 баллов, которые конвертируется в «отлично», «хорошо», «удовлетворительно» или «неудовлетворительно» (промежуточная форма контроля — экзамен).

81–100 баллов	«отлично»
61-80	«хорошо»
41-60	«удовлетворительно»
21- 40	«неудовлетворительно»
0-20	Не аттестован

Текущий контроль освоения компетенций обучающимся оценивается из суммы набранных баллов в соответствии с уровнем сформированности компетенций: пороговым или продвинутым. При этом учитывается посещаемость обучающимся лекций, лабораторных занятий, активность обучающегося на лабораторных занятиях, результаты промежуточных письменных и устных контрольных опросов, итоги контрольных работ и тестов, участие обучающихся в научной работе (например, написание рефератов, докладов, выступления на научных конференциях и т.п.). Каждый компонент имеет соответствующий удельный вес в баллах:

Пороговый уровень (41-60 баллов):

- контроль посещений 20 баллов,
- опрос и собеседование 20 баллов
- ведение лабораторной тетради— 10 баллов;
- тестовый контроль 10 баллов.

Продвинутый уровень (61-100 баллов):

- контрольная работа 10
- реферат 10 баллов,
- экзамен 20 баллов.

Контроль посещений

При проведении экзамена учитывается посещаемость обучающимся лекционных занятий, активность на лабораторных занятиях, выполнение самостоятельной работы, отработка занятий, пропущенных по уважительной причине:

- 15-20 баллов регулярное посещение занятий, высокая активность на лабораторных занятиях, содержание и изложение материала отличается логичностью и смысловой завершенностью, обучающийся показал владение материалом, умение четко, аргументировано и корректно отвечать на поставленные вопросы, отстаивать собственную точку зрения.
- 10-14 баллов систематическое посещение занятий, участие в лабораторных занятиях, единичные пропуски по уважительной причине и их отработка, изложение материала носит преимущественно описательный характер, обучающийся показал достаточно уверенное владение материалом, однако недостаточное умение четко, аргументировано и корректно отвечать на поставленные вопросы и отстаивать собственную точку зрения.
- 5-9 балла нерегулярное посещение занятий, низкая активность на лабораторных занятиях, обучающийся показал неуверенное владение материалом, неумение отстаивать собственную позицию и отвечать на вопросы.
- 0-4 балла регулярные пропуски занятий и отсутствие активности работы, обучающийся показал незнание материала по содержанию дисциплины.

Шкала оценивания ответа на экзамене

Показатель	Балл
Обучающийся обнаруживает высокий уровень овладения теорией	20
вопроса, знание терминологии, умение давать определения понятиям,	
знание персоналий, сопряженных с теоретическим вопросом,	
умение проиллюстрировать явление практическими примерами, дает	
полные ответы на вопросы с приведением примеров и/или поясне-	
ний.	
Обучающийся недостаточно полно освещает теоретический вопрос,	15
определения даются без собственных объяснений и дополнений, отве-	
ты на вопросы полные с приведением примеров	
Обучающийся обнаруживает недостаточно глубокое понимание теоре-	10
тического вопроса, Определения даются с некоторыми неточностями,	
дает ответы только на элементарные вопросы, число примеров ограни-	
чено	
Обучающийся обнаруживает незнание основных понятий и определе-	5
ний, не умеет делать выводы, показывает крайне слабое знание про-	
граммного материала.	

Для оценки рефератов используются следующие критерии:

- 10-8 баллов содержание соответствуют поставленным цели и задачам, изложение материала отличается логичностью и смысловой завершенностью, обучающийся показал владение материалом, умение четко, аргументировано и корректно отвечать на поставленные вопросы, отстаивать собственную точку зрения.
- 7-5 баллов содержание недостаточно полно соответствует поставленным цели и задаче исследования, работа выполнена на недостаточно широкой базе источников и не учитывает новейшие достижения в области химической экологии, изложение материала носит преимущественно описательный характер, обучающийся показал достаточно уверенное владение материалом, однако недостаточное умение четко, аргументировано и корректно отвечать на поставленные вопросы и отстаивать собственную точку зрения.
- 4-2 балла содержание не отражает особенности проблематики избранной темы; содержание работы не полностью соответствует поставленным задачам, база источников является фрагментарной и не позволяет качественно решить все поставленные в работе задачи, работа не учитывает новейшие достижения историографии темы, обучаю-

щийся показал неуверенное владение материалом, неумение отстаивать собственную позицию и отвечать на вопросы.

1-0 балла — работа не имеет логичной структуры, содержание работы в основном не соответствует теме, база источников исследования является недостаточной для решения поставленных задач, обучающийся показал неуверенное владение материалом, неумение формулировать собственную позицию.

Для оценки тестовых работ используются следующие критерии:

0-29 % правильных ответов оценивается как «неудовлетворительно» (2-балла);

30-59% – «удовлетворительно» (3-5 баллов);

60-79% – «хорошо» (6-8 баллов);

80-100% – «отлично» (8-10 баллов).

Шкала оценивания контрольной работы

Показатель	Баллы
Работа выполнена полностью и без существенных ошибок	8-10
Работа выполнена частично (41-80%)	5-7
Работа выполнена менее, чем на 40% или содержит грубые ошибки	2-4
Работа не выполнена	0-1

Максимальное количество баллов –10

Шкала оценивания опроса и собеседования

Уровень оценивания	Критерии оценивания	Баллы
Опрос и собеседование	Свободное владение материалом	4
	Достаточное усвоение материала	3
	Поверхностное усвоение материала	1-2
	Неудовлетворительное усвоение материала	0

Максимальное количество баллов – 20 (по 4 балла за каждый опрос).

Шкала оценивания ведения лабораторной тетради

Уровень оценивания		Критерии оценивания	Баллы
Ведение лабораторной		Работа выполнена полностью (81%) и без су-	8-10
тетради		щественных ошибок	
		Работа выполнена частично (41%-80%) или с	6-7
		небольшими ошибками	
		Работа выполнена менее чем на 40% или со-	3-5
		держит грубые ошибки	
		Работа не выполнена	0-2

Максимальное количество баллов –10

6. Учебно-методическое и ресурсное обеспечение дисциплины

Основная литература

1. Александрова, Э.А. Аналитическая химия: учебник и практикум для вузов в 2-х кн. / Э. А. Александрова, Н. Г. Гайдукова. — 3-е изд. — Москва : Юрайт, 2019. — Текст : электронный.

— Режим доступа:

 $\underline{\text{https://biblio-online.ru/book/analiticheskaya-himiya-v-2-knigah-kniga-1-himicheskie-metody-analiza-428031}$

 $\frac{https://biblio-online.ru/book/analiticheskaya-himiya-v-2-knigah-kniga-2-fiziko-himicheskie-metody-analiza-428032}{metody-analiza-428032}$

- 2. Вершинин, В.И. Аналитическая химия [Текст]: учебник / В. И. Вершинин, И. В. Власова, И. А. Никифорова. 2-е изд. СПб.: Лань, 2017. 428с.
- 3. Никитина, Н.Г. Аналитическая химия и физико-химические методы анализа [Текст]: учебник и практикум для вузов / Н. Г. Никитина, А. Г. Борисов, Т. И. Хаханина. 4-е изд. М.: Юрайт, 2019. 394с.

Дополнительная литература

- 1. Александрова, Т.П. Аналитическая химия [Электронный ресурс]: учеб. пособие. Новосибирск: НГТУ, 2016. 76с.
- Режим доступа:

http://www.studentlibrary.ru/book/ISBN9785778229518.html

- 2. Александрова, Т.П. Аналитическая химия и физико-химические методы анализа [Электронный ресурс]: учеб. пособие. Новосибирск: НГТУ, 2016. 106.
- Режим доступа:

http://www.studentlibrary.ru/book/ISBN9785778230330.html

- 3. Аналитическая химия : учеб. пособие для вузов / А. И. Апарнев, Г. К. Лупенко, Т. П. Александрова, А. А. Казакова. 2-е изд. Москва : Юрайт, 2019. 107 с. Текст : электронный.
 - Режим доступа:

https://biblio-online.ru/book/analiticheskaya-himiya-444111

- 4. Аналитическая химия и физико-химические методы анализа [Текст]: учебник для вузов в 2-х т. / Ищенко А.А., ред. М.: Академия, 2014.
- 5. Борисов, А.Н. Аналитическая химия. Расчеты в количественном анализе [Электронный ресурс]: учебник и практикум для вузов / А. Н. Борисов, И. Ю. Тихомирова. 2-е изд. М.: Юрайт, 2018. 119 с.
 - Режим доступа:

www.biblio-online.ru/book/FA5DED9A-55D8-444B-B6AB-472542921666.

- 6. Жебентяев, А.И. Аналитическая химия. Химические методы анализа [Текст]: учеб.пособие для вузов / А.И. Жебентяев, А.К. Жерносек, И.Е. Талуть. 2-е изд. М.: Инфра-М, 2014. 542 с.
- 7. Подкорытов, А. Л. Аналитическая химия. Окислительно-восстановительное титрование [Электронный ресурс]: учеб. пособие для вузов / А. Л. Подкорытов, Л. К. Неудачина, А. Штин. М.: Юрайт, 2018. 60 с.
 - Режим доступа:

www.biblio-online.ru/book/1DBE7179-E7D7-412C-922C-840DB6B32463.

- 8. Харитонов, Ю.Я. Аналитическая химия. Аналитика 1. Общие теоретические основы. Качественный анализ [Электронный ресурс]. - М. : ГЭОТАР-Медиа, 2014. – 688с.
- Режим доступа:

http://www.studentlibrary.ru/book/ISBN9785970429341.html

Ресурсы информационно-телекоммуникационной сети «Интернет»

- 1. http://www/Cemport.ru,
- 2. http://www.rushim.ru
- 3. http://www.Alhimir.ru
- 4. http://znanium.com/catalog.php
- 5. http://ru..encydia.com./en/
- 6.http://www.lomonosov-fund.ru/enc/ru/encyclopedia
- 7.http://slovari.yandex.ru/
- 8.http://www.for-stvdents.ru/details/neorganicheskaya-hiiTiiya-v-3-h-tomah.html
- 9.http://www.for-stydents.ru/details/kurs-obschev-himii.html
- $10. \underline{http://www.iprbookshop.ru/analiticheskaya-ximiya-i-fiziko-ximicheskie-metodyi-analiza.-\underline{uchebnoe-posobie.html}$

7. Методические указания по освоению дисциплины

Методические рекомендации к освоению учебной дисциплины «Аналитическая химия»

8. Информационные технологии для осуществления образовательного процесса по дисциплине

Лицензионное программное обеспечение:

Microsoft Windows

Microsoft Office

Kaspersky Endpoint Security

Информационные справочные системы:

Система ГАРАНТ

Система «КонсультантПлюс»

Профессиональные базы данных

fgosvo.ru

pravo.gov.ru

www.edu.ru