Документ подписан простой электронной подписью Информация о владельце:

ФИО: Наумова Наталия Александунт НИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ

Должность: Ректор Дата подписания: 24.10.20.44 14.71.41 Уникальный программный ключ. КОВСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ 6b5279da4e034bff679172803da5b7b559fc69e2 (МГОУ)

Факультет технологии и предпринимательства

Кафедра современных промышленных технологий, робототехники и компьютерной графики

УТВЕРЖДЕН

на заседании кафедры Протокол от «10» марта 2022 г., № 11 И.о. зав. кафедрой

/Корецкий М.Г./

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

Энергетические машины

Направление подготовки

44.03.05 Педагогическое образование (с двумя профилями подготовки)

Профиль:

Технологическое образование (проектное обучение) и образовательная робототехника

Мытищи 2022

СОДЕРЖАНИЕ

- 1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы
- 2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания
- 3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы
- 4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенции

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код и наименование	Этапы формирования	Формы учебной работы по
компетенции	компетенции	формированию компетенций в
		процессе освоения образовательной
		программы
	Когнитивный	1.Работа на учебных занятиях
ОПК-8. Способен		2.Самостоятельная работа
осуществлять	Операционный	1.Работа на учебных занятиях
педагогическую		2.Самостоятельная работа
деятельность на основе	Деятельностный	1.Работа на учебных занятиях
специальных научных		2.Самостоятельная работа
знаний		

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

ОПК-8. Способен осуществлять педагогическую деятельность на основе специальных научных знаний

Этапы форм	Уров ни			Шкала оценивания
ирова ния компе тенци и	освое ния соста вляю щей комп етенц ии	Описание показателей	Критерии оценивания	Выражение в баллах БРС
Когни тивны й	базов ый	Знание теоретических	Общее представление о теоретических основах энергетических машин для осуществления педагогической деятельности на основе специальных научных знаний	41-60
	повы шенн ый	основ энергетических машин для осуществления педагогической деятельности на основе	Уверенное знание теоретических основ энергетических машин для осуществления педагогической деятельности на основе специальных научных знаний	61 - 80
	прод вину тый	специальных научных знаний	Осознанное знание теоретических основ энергетических машин для осуществления педагогической деятельности на основе специальных научных знаний	81 - 100

Опоро			Спабое умение использовать амения	
Опера ционн ый	базов ый	Умение использовать	Слабое умение использовать знание теоретических основ энергетических машин для осуществления педагогической деятельности на основе специальных научных знаний	41-60
	повы шенн ый	знание теоретических основ энергетических машин для осуществления педагогической деятельности на	Уверенное умение использовать знание теоретических основ энергетических машин для осуществления педагогической деятельности на основе специальных научных знаний	61 - 80
	прод вину тый	основе специальных научных знаний	Осознанное умение использовать знание теоретических основ энергетических машин для осуществления педагогической деятельности на основе специальных научных знаний	81 - 100
Деяте льнос тный	базов ый	Владение опытом использования знания	Владение первоначальным опытом использования знания теоретических основ энергетических машин для осуществления педагогической деятельности на основе специальных научных знаний	41-60
	повы шенн ый	теоретических основ энергетических машин для осуществления педагогической деятельности на	Накопление полезного опыта использования знания теоретических основ энергетических машин для осуществления педагогической деятельности на основе специальных научных знаний	61 - 80
	прод вину тый	основе специальных научных знаний	Накопление широкого опыта использования знания теоретических основ энергетических машин для осуществления педагогической деятельности на основе специальных научных знаний	81 - 100

Шкала оценивания Тест

Написание теста оценивается по шкале от 0 до 10 баллов. Освоение компетенций зависит от результата написания теста:

компетенции считаются освоенными на	9-10 баллов (80-100% правильных ответов)
высоком уровне (оценка отлично)	
компетенции считаются освоенными на	7-8 баллов (70-75 % правильных ответов)
базовом уровне (оценка хорошо);	
компетенции считаются освоенными на	4-6 - баллов (50-65 % правильных ответов)
удовлетворительном уровне (оценка	
удовлетворительно);	
компетенции считаются не освоенными	1-3 баллов (менее 50 % правильных ответов)
(оценка неудовлетворительно).	

Расчетно-графическая работа

выполнены поставленные цели работы, студент четко и				
без ошибок ответил на все контрольные вопросы				
выполнены все задания работы; студент ответил на все	7-8			
контрольные вопросы с замечаниями				
выполнены все задания расчетно-графической				
работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями				
студент не выполнил или выполнил неправильно				
задания расчетно-графической работы; студент ответил на контрольные				
вопросы с ошибками или не ответил на контрольные вопросы				

Шкала оценивания реферата

оценивания реферата			
Критерии оценивания			
Свободное изложение и владение материалом. Полное			
усвоение сути проблемы, достаточно правильное изложение теории и методологии,	5		
анализ фактического материала и чёткое изложение итоговых результатов, грамотное			
изложение текста.			
Достаточное усвоение материала. Суть проблемы раскрыта, аналитические материалы,			
в основном, представлены; описание не содержит грубых ошибок; основные выводы	3		
изложены и, в основном, осмыслены.			
Поверхностное усвоение теоретического материала. Недостаточный анализ			
анализируемого материала. Суть проблемы изложена нечетко; в использовании	1		
понятийного аппарата встречаются несущественные ошибки;			
Неудовлетворительное усвоение теоретического и фактического материала по			
проблемам научного исследования. Суть проблемы и выводы изложены плохо; в	0		
использовании понятийного аппарата встречаются грубые ошибки; основные выводы			
изложены и осмыслены плохо.			

Шкала оценивания лабораторной работы

шкала оценивания лас	
выполнены поставленные цели работы, студент четко и	5 баллов
без ошибок ответил на все контрольные вопросы	
выполнены все задания работы; студент	
ответил на все	3 балла
контрольные вопросы с замечаниями	
выполнены все задания лабораторной	2.5
работы с замечаниями; студент ответил на	2 балла
все контрольные вопросы с замечаниями	
студент не выполнил или выполнил	
неправильно	
задания лабораторной работы; студент	0 баллов
ответил на контрольные	o omnob
вопросы с ошибками или не ответил на	
контрольные вопросы	

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Пример теста

Группа	Фамилия	Вариант №

1. Размерность (наименование) величины р (плотность) имеет вид

- a) $\kappa \Gamma / M^2$; 6) $\kappa \Gamma / M^3$; b) $M^3 / \kappa \Gamma$; Γ) $M^3 \times \kappa \Gamma$.

2. Элементарная работа газа определяется как

a) dS = dq / T; 6) $du = cv \times dT$; B) $dl = pdv \Gamma$) di = cp dT;

3. Уравнение адиабатического процесса имеет вид

a)
$$p_1 \times v_1^k = p_2 \times v_2^k$$
; 6) $p_1 \times v_1 = p_2 \times v_2$; B) $p_1 / T_1 = p_2 / T_2$ Γ) $v_1 / T_1 = v_2 / T_2$

4. Аналитическое выражение первого закона термодинамики имеет вид

a)
$$dq = du + pdv$$
; 6) $i = u + pv$; B) $dq = TdS$; $r) dq = \alpha(T1 - T2)$

5. Изображение изохорического процесса в ру-координатах имеет вид

а) отрезка гиперболы; б) отрезка параболы; в) отрезка, параллельного оси Р; г) отрезка, параллельного оси V.

6. Критерий Рейнольдса имеет вид

- a) Re = vd / v; 6) Re = v/t; B) Re = F/S; Γ) Re=A/t.
- 2. Тело полностью поглощает энергию, если
- a) A = 1; 6) A = 0, 5; B) A = 0; Γ) A = 0, 25.

3. Термический коэффициент полезного действия цикла Карно имеет вид

a)
$$\eta_t = 1 - 1 / \beta(\kappa - 1)/k$$
 .6) $\eta_t = 1 - 1 / \acute{\epsilon}^{-k}$ b) $\eta_t = T_1 - T_2 / T_1$ Γ) $T_1 - T_2$

9. Последовательность термодинамических процессов в идеальном цикле двигателя внутреннего сгорания с подводом теплоты при постоянном объеме

- а) адиабата --- изохора ---- адиабата -изохора
- б) адиабата---изобара----адиабата----изохора
- в) адиабата----изохора---изобара---адиабата –изохора
- г) изохора----адиабата----адиабата----изобара.

10. Выбрать процессы, при которых происходит подвод теплоты в идеальном цикле паросиловой установки:

а) в изохорический; б) изотермический; в) изобарический; г) адиабатический.

11. При движении продуктов сгорания по каналу ракетного двигателя с числом $M > 1$ для увеличения скорости течения площадь F должна:				
a) dF> 0; 6) dF< 0; B) dF=0 Γ) dF=const.				
12.Из представленных соотношений выберите соотношение для определения теплоемкости газа a) $c = dq/dT$ б) $c = dT$ в) $c = dq \times dT$; г) $c = di$				
13. Из представленных соотношений выберите уравнение Стефана-Больцмана.				
a) $E_s = \sigma_s / T^4$;				
14. Площадь под кривой процесса pv-координатах (в каком-то масштабе) отображает:				
а) количество теплоты, подведенной или отведенной от рабочего тела; б) изменение внутренней энергии рабочего тела; в) механическую работу в процессе; г) изменение энтропии газа; г) количеству теплоты отведенной от рабочего тела.				
15. Наименьшее значение коэффициента теплопроводности имеет следующий материал:				
а) вода; б) воздух; в) серебро г) пробка.				
16. К динамическим насосам не относятся:				
а) поршневые насосы б) центробежные насосы в) осевые насосы г) вихревые насосы				
17. Воздушные колпаки используются для выравнивания подачи:				
а) центробежных насосов б) поршневых насосов в) диагональных насосов г) осевых насосов				
18. К насосам объемного действия не относятся:				
а) поршневые насосы б) плунжерные насосы в) осевые насосы г) пластинчатые насосы				
19. Вставьте слово.				
Самовсасыванием не обладает «» насос.				
а) поршневой насос				

- б) центробежный
- в) диафрагменный
- г) шестеренный
- 20. Определите полный КПД центробежного насоса, если известно, что его механический КПД равен $\eta_{\scriptscriptstyle M}=0$, гидравлический КПД равен $\eta_{\scriptscriptstyle \Gamma}=0.9$, объемный КПД равен $\eta_{\scriptscriptstyle O}=0.8$
- a) 0,6
- б) 0,57
- в) 0,68
- г)0,7

Пример расчетно-графической работы по теме «Теплопередача»

Задание

Определить тепловой поток через 1 м² кирпичной стены помещения толщиной δ с коэффициентом теплопроводности λ ,=0,8 BT/(м×K). Температура воздуха внутри помещения $t_{\text{вн}} = 20$ °C, коэффициент теплоотдачи к внутренней поверхности стенки $\alpha_1 = 8$ BT/(м²×K), температура наружного воздуха $t_{\text{н}}$, коэффициент теплоотдачи от наружной поверхности стены, обдуваемой ветром, α_2 . Вычислить также температуры на поверхностях стены $t_{\text{ст}1}$ и $t_{\text{ст}.}$

Таблица

№ задания	0	1	2	3	4	5	6	7	8	9
δ, см.	51	76,5	25,5	51	25,5	76,5	51	76,5	25,5	51
t _H , °C	35	30	25	20	15	5	0	-10	-15	-20
α_2 , Bt/(M2×K)	8,2	8,4	8,6	8,8	9,0	9,2	9,4	9,6	9,8	10

Примерные темы рефератов

- 1. Отечественные и зарубежные теплоэнергетики, их роль в развитии науки и техники.
- 2. Развитие теплоэнергетики в России.
- 3. Тепловые насосы в быту.
- 4. Теплоизоляционные материалы в промышленности, строительстве и в быту..
- 5. Силовая энергетика станочного оборудования.
- 6. Абсорбционные холодильные установки.
- 7. Тепловые насосы в быту.
- 8. Перспективы современного автомобильного двигателестроения.
- 9. Экологические проблемы современного автомобиля.
- 10. Системы теплоснабжения экодома.
- 11. Современные приливные ГЭС.
- 12. Перспективы развития ТЭС.
- 13. Геотермальные электростанции.
- 14. Ветроэнергетика: плюсы и минусы.
- 15. Роль ГАЭС в современной электроэнергетике.
- 16. Экологические проблемы электроэнергетики.

Примерные вопросы к экзамену

- 1. Предмет технической термодинамики и ее метод. Термодинамическая система и ее виды. Рабочее тело и внешняя среда.
- 2. Теплота и работа как формы энергетического взаимодействия внешней среды и рабочего тела.
- 3. Основные параметры состояния рабочего тела. Идеальный газ. Уравнение состояния идеального газа.
- 4. Сущность первого закона термодинамики. Работа процесса. Графическое изображение работы в ру диаграмме.
- 5. Энтальпия. Теплоемкость газов. Теплоемкость идеального газа при постоянном давлении и при постоянном объеме.
- 6. Энтропия. Диаграмма Ts. Графическое изображение теплоты в диаграмме Ts.

- 7. Круговые термодинамические процессы (циклы). Прямой и обратный (обратимый) цикл Карно.
- 8. Сущность второго закона термодинамики и его основные формулировки.
- 9. Термодинамические процессы идеальных газов.
- 10. Процессы парообразования в pv- и Тs-диаграммах.
- 11. Способы распространения тепла и виды теплообмена.
- 12. Теплопроводность. Коэффициент теплопроводности. Термическое сопротивление.
- 13. Конвективный теплообмен. Формула Ньютона Рихмана. Коэффициент теплоотдачи.
- 14. Излучение энергии. Законы излучения.
- 15. Уравнение теплопередачи. Коэффициент теплопередачи.
- 16. Теплообменные аппараты.
- 17. Топливные ресурсы и их характеристики.
- 18. Котельные агрегаты и установки. Устройство и принцип работы основных типов паровых котлов.
- 19. Двигатели внутреннего сгорания. Принципиальные схемы. Области применения.
- 20. Идеальный цикл паросиловой установки, термический КПД и пути его повышения.
- 21. Газотурбинные двигатели (Г.Т.Д), принципиальная схема, характеристика, принцип работы.
- 22. Реактивные двигатели, их классификация.
- 23. Паровая компрессионная холодильная установка, схема, принцип действия и идеальный цикл.
- 24. Классификация и области применения гидравлических машин.
- 25. Насосы. Классификация по принципу действия. Основные параметры, области применения.
- 26. Типы и основы работы гидравлических турбин.
- 27. Гидропривод. Основные понятия и определения. Классификация, назначение.
- 28. Возобновляемые и невозобновляемые энергоресурсы.
- 29. Тепловые электрические станции (ТЭС): конденсационные электростанции и теплоэлектроцентрали (ТЭЦ).
- 30. Атомные электростанции (АЭС). Основные схемы и характеристики АЭС.
- 31. Гидроэлектростанции (ГЭС): плотинные, деривационные, гидроаккумулирующие, приливные.
- 32. Перспективы развития энергетики. Экологические проблемы современной энергетики.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Основными формами текущего контроля являются тестирование, расчетно-графическая работа, а также подготовка рефератов.

Тестирование

Предлагаемые тестовые задания по курсу «Энергетические машины» предназначены для повторения пройденного материала и закрепления знаний, главная цель тестов - систематизировать знания студентов. Во всех тестовых заданиях необходимо выбрать правильный из предлагаемых ответов, завершить определение либо вставить

недостающий термин. Текущий контроль знаний в виде тестирования, проводится в рамках практического занятия.

Написание теста оценивается по шкале от 1 до 10 балла. Освоение компетенций зависит от результата написания теста.

Методические указания по выполнению расчетно-графической работы по теме «Теплопередача»

Количество теплоты Q, которое передается через некоторую поверхность S в единицу времени называется мощностью теплового потока или тепловым потоком, и измеряется в ваттах, Вт.

Интенсивность передачи теплоты обычно характеризуют плотностью теплового потока q, равной мощности теплового потока Q через $1 \text{ } \text{м}_2$ поверхности S

$$q = \frac{Q}{S}q = \frac{Q}{S}$$

Плотность теплового потока измеряется в B_T/M_2 .

Стационарный процесс теплопередачи через плоскую стенку от одного теплоносителя (жидкости, газа) к другому можно представить в виде трех последовательных процессов (см. рис.2):

- передача тепла от внутреннего теплоносителя к твердой стенке путем конвекции;
- передача тепла путем теплопроводности через твердую стенку;
- придача тепла путем конвекции от твердой стенки к внешнему теплоносителю.

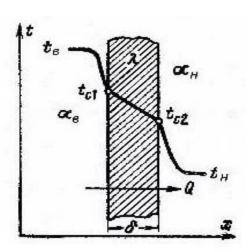


Рис. 2. Теплопередача через плоскую стенку

Удельный тепловой поток при теплопроводности через однородную стенку толщиной δ , на поверхностях, которой поддерживаются постоянные температуры t_{cr1} и t_{cr2} определяют с помощью закона Фурье

$$q = \frac{\lambda(t_{\text{CT1}} - t_{\text{CT2}})}{\delta} q = \frac{\lambda(t_{\text{CT1}} - t_{\text{CT2}})}{\delta}, \tag{2.1}$$

где λ - коэффициент теплопроводности вещества стенки, измеряемый в $BT/(M\cdot K)$.

При теплоотдаче (конвективном теплообмене между твердой поверхностью и жидким или газообразном теплоносителе) удельный тепловой поток рассчитывают с помощью закона Ньютона-Рихмана

$$q = \alpha |t_c - t_{\mathfrak{K}}| q = \alpha |t_c - t_{\mathfrak{K}}|, \tag{2.2}$$

где t_c и $t_{\text{ж}}$ __ постоянные температуры стенки и омывающего теплоносителя, а α _ коэффициент теплоотдачи, измеряемый в $\text{Bt/}(\text{м}^2 \cdot \text{K})$.

При расчетах теплового потока при конвективном теплообмене его величину принято считать положительной, поэтому разность температур стенки и жидкости или газа всегда берут по абсолютной величине.

Следует обратить внимание на то, что, так как температуры в формулах законов Фурье и Ньютона-Рихмана входят в виде разности величин, а градусы Кельвина и Цельсия равны друг другу, при тепловых расчетах обычно нет необходимости использования абсолютных температур, а можно использовать обычную шкалу Цельсия.

Т.о. в случае теплопередачи через плоскую стенку, с обеих сторон которой находится воздух, температура которого внутри помещения равна $t_{\rm B}$, а снаружи — $t_{\rm H}$, а соответствующие коэффициенты теплоотдачи α_1 и α_2 и температуры внутренней и наружной поверхностей стенки равны $t_{\rm c1}$ и $t_{\rm c2}$, соответственно, при этом толщина стенки равна δ , а коэффициент теплопроводности — δ (см. рис. 2), можно записать следующее.

Удельный тепловой поток при теплоотдаче от воздуха внутри помещения к стенке в соответствии с ф. 2.2 будет равен

$$q = \alpha_1 (t_{\rm B} - t_{\rm c1}) q = \alpha_1 (t_{\rm B} - t_{\rm c1}) \tag{2.3}$$

Удельный тепловой поток при теплопроводности через твердую стенку в соответствии с ф. 2.1 можно записать

$$q = \frac{\lambda (t_{\text{CT1}} - t_{\text{CT2}})}{\delta} q = \frac{\lambda (t_{\text{CT1}} - t_{\text{CT2}})}{\delta}$$
(2.4)

Удельный тепловой поток при теплоотдаче от внешней поверхности стенки к наружному воздуху в соответствии с ф. 2.2 будет равен

$$q = \alpha_2(t_{ct2} - t_{H})q = \alpha_2(t_{ct2} - t_{H})$$
 (2.5)

После несложных преобразований, учитывая, что величины удельных тепловых потоков равны, получаем уравнение теплопроводности через плоскую стенку

$$q = \frac{t_{\rm B} - t_{\rm H}}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}} \qquad q = \frac{t_{\rm B} - t_{\rm H}}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}} = k(t_{\rm B} - t_{\rm H}) ,$$
(2.6)

где
$$k = \frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2 \alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}$$
 - коэффициент теплопередачи.

Пример выполнения задания

Определить тепловой поток через 1 м² кирпичной стены помещения толщиной $\delta = 50$ см с коэффициентом теплопроводности λ ,=0,8 Bt/(м K). Температура воздуха внутри помещения $t_{\text{вн}} = 20$ °C, коэффициент теплоотдачи к внутренней поверхности стенки $\alpha_1 = 8$ Bt/(м²K), температура наружного воздуха $t_{\text{н}} = 10^{\circ}$ C, коэффициент теплоотдачи от наружной поверхности стены, обдуваемой ветром, $\alpha_2 = 8,8$ Bt/(м²K). Вычислить также температуры на поверхностях стены $t_{\text{ст}1}$ и $t_{\text{ст}2}$.

- 1. Переводим толщины стенки в единицы СИ. Имеем $\delta = 0.5$ м.
- 2. По формуле 2.6 рассчитываем удельный тепловой поток при теплопередаче через плоскую стенку

$$q = \frac{t_{\rm B} - t_{\rm H}}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}} q = \frac{t_{\rm B} - t_{\rm H}}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}} = \frac{20 - 10}{\frac{1}{8} + \frac{0.5}{0.8} + \frac{1}{8.8} + \frac{0.5}{0.8} + \frac{1}{8.8}} = 11,58 \, \text{BT/M}^2$$

3. Определяем температуру внутренней поверхности стенки. Для этого запишем уравнение теплоотдачи от воздуха внутри помещения к стенке, воспользовавшись формулой 2.3

$$q = \alpha_1(t_{\rm B} - t_{\rm c1})q = \alpha_1(t_{\rm B} - t_{\rm c1}),$$

Раскрыв скобки, и проведя простые преобразования, получаем

$$t_{c1} = t_B - - q/\alpha_1 \alpha_1 = 20 - \frac{11,5811,58}{8} = 18,6 \, {}^{0}C$$

4. Определяем температуру внешней поверхности стенки. Для этого запишем уравнение теплоотдачи от наружной поверхности стенки к окружающему воздуху, воспользовавшись формулой 2.4

$$q = \alpha_2(t_{ct2} - t_{H})q = \alpha_2(t_{ct2} - t_{H}),$$

Раскрыв скобки, и проведя простые преобразования, получаем

$$t_{c2} = t_H - - q/\alpha_2\alpha_2 = 10 + \frac{11,5811,58}{8.8} = 11,3 \, ^{0}C.$$

5. Используя полученные значения температур, строим схему теплопередачи через кирпичную стенку, аналогичную приведенной на рис. 2, откладывая в масштабе по вертикальной оси значения температур, а по горизонтальной – толщину стенки.

Методические указания по написанию реферата и требования к оформлению реферата.

Реферат – письменная работа по одному из актуальных вопросов в рамках дисциплины. Цель подготовки реферата – обобщение различных научных идей, концепций, точек зрения по наиболее важным изучаемым проблемам на основе самостоятельного анализа монографических работ и учебной литературы. Обучающемуся предоставляется право самостоятельно выбрать тему реферата из списка рекомендованных тем, приведенных в рабочей программе дисциплины. Не допускается в одной группе написания двух и более рефератов по одной теме. Подготовка реферата должна осуществляться в соответствии с планом, текст должен иметь органическое внутреннее единство, строгую логику изложения, смысловую завершенность.

Реферат должен иметь определенную структуру: содержание, введение, два-три параграфа основной части, заключение и список использованных источников и литературы, приложение (при необходимости).

Во введении (максимум 3–4 страницы) раскрывается актуальность темы, излагаются основные точки зрения, формируются цель и задачи исследования. В основной части раскрывается содержание понятий и положений, вытекающих из анализа изученной литературы и результатов эмпирических исследований. В заключении подводятся итоги авторского исследования в соответствии с выдвинутыми задачами, делаются самостоятельные выводы и обобщения. Объем реферата должен составлять 10–15 страниц машинописного (компьютерного) текста.

Перечень требований к выступлению студента:

- связь выступления с предшествующей темой или вопросом;
- раскрытие сущности проблемы;
- методологическое значение для научной, профессиональной и практической деятельности. Важнейшие требования к выступлениям студентов самостоятельность в подборе фактического материала и аналитическом отношении к нему, умение рассматривать примеры и факты во взаимосвязи и взаимообусловленности, отбирать наиболее существенные из них. Выступление студента должно соответствовать требованиям логики. Четкое вычленение излагаемой проблемы, ее точная формулировка, неукоснительная последовательность аргументации именно данной проблемы, без неоправданных отступлений от нее в процессе обоснования, безусловная доказательность, непротиворечивость и полнота аргументации, правильное и содержательное использование понятий и терминов.

Требования к экзамену

Оценка знаний студента в процессе экзамена осуществляется исходя из следующих критериев: умение формулировать определения понятий, данных в вопросе, с использованием специальной лексики, показать связи между данными понятиями; способность дать развернутый ответ на поставленный вопрос с соблюдением логики изложения материала; проанализировать и сопоставить различные точки зрения на аргументировать поставленную проблему; умение собственную точку зрения, иллюстрировать высказываемые суждения и умозаключения практическими примерами. 70-60 баллов ставится при полных, исчерпывающих, аргументированных ответах на все основные дополнительные вопросы экзамена, отличающихся логической последовательностью и четкостью в выражении мыслей и обоснованностью выводов,

демонстрирующих знания источников и литературы, понятийного аппарата и умение им пользоваться при ответе. Представлены качественно выполненные практические задания в полном объеме.

59-49 баллов ставится при полных, исчерпывающих, аргументированных ответах на все основные и дополнительные вопросы экзамена, отличающихся логичностью, четкостью и знаниями понятийного аппарата и литературы по теме вопроса при незначительных упущениях при ответах. Представлены все выполненные практические задания, но часть из них имеет недочеты в исполнении.

48-38 баллов ставиться при неполных и слабо аргументированных ответах, демонстрирующих общее представление и элементарное понимание существа поставленных вопросов, понятийного аппарата и обязательной литературы. Представлена основная часть выполненных практических заданий, либо их полный объем с недочетами в исполнении.

0-4 балла ставится при незнании и непонимании студентом существа вопросов экзамена. Отсутствуют выполненные практические задания.

Шкала промежуточной аттестации

Распределение баллов по видам работ

Вид работы	Кол-во баллов (максимальное значение)		
Тест	до 10 баллов		
Расчетно-графическая работа	до 10 баллов		
Реферат	до 5 баллов		
Лабораторная работа	до 5 баллов		
Экзамен	до 70 баллов		

Итоговая шкала оценивания по дисциплине

Цифровое выражение	Выражение в баллах БРС	Словесное выражение	Описание оценки в требованиях к уровню и объему компетенций
5	81 - 100	Отлично	Освоен продвинутый уровень всех составляющих компетенций: ОПК-8
4	61 - 80	Хорошо	Освоен повышенный уровень всех составляющих компетенций: ОПК-8
3	41 - 60	Удовлетворительно	Освоен базовый уровень всех составляющих компетенций: ОПК-8
2	до 40	Неудовлетворительно	Не освоен базовый уровень всех составляющих компетенций: ОПК-8