Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Дата подписания: 24.10.2024 14:21:41

Уникальный программный ключ:

уникальный программный ключ:
6b5279da4e034bff679172803da5b7b559fc642HUC ТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ
Государственное образовательное учреждение высшего образования Московской области МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ (МГОУ)

Физико-математический факультет Кафедра математического анализа и геометрии

Согласовано управлением организации и контроля качества образовательной

деятельности

" 10 » 06

Начальник управления

/М.А. Миненкова/

Одобрено учебно методическим советом

Протокол « / Председатель

Рабочая программа дисциплины

Теория функций комплексного переменного

Направление подготовки

44.03.01 Педагогическое образование

Профиль: Математика

Квалификация

Бакалавр

Форма обучения

заочная

Согласовано учебно-методической комиссией физико-математического

факультета:

Протокол «Н» ессе 2020 г.№ во

Председатель УМКом

mon / Барабанова Н.Н./ Рекомендовано кафедрой

математического анализа и геометрии

Протокол «<u>14</u> »<u>ексе</u>2020 г.<u>№</u> 10

Зав. кафедрой

/ Кондратьева Г.В. /

Мытищи 2020

Авторы-составители:

Бедрикова Е.А., кандидат физико-математических наук, доцент кафедры математического анализа и геометрии Графов Д.А., кандидат физико-математических наук, доцент кафедры математического анализа и геометрии

Рабочая программа дисциплины «Теория функций комплексного переменного» составлена в соответствии с требованиями Федерального Государственного образовательного стандарта высшего образования по направлению подготовки 44.03.01 Педагогическое образование профиль «Математика», утвержденного приказом МИНОБРНАУКИ РОССИИ от 22.02.18г. № 121.

Дисциплина входит в обязательную часть блока Б1 «Дисциплины (модули)» и является обязательной для изучения.

Год начала подготовки 2020

СОДЕРЖАНИЕ

1.	Планируемые результаты обучения
2.	Место дисциплины в структуре образовательной программы6
3.	Объем и содержание дисциплины7
4.	Учебно-методическое обеспечение самостоятельной работы обучающихся8
	Фонд оценочных средств для проведения текущей и промежуточной аттестации по сциплине
6.	Учебно-методическое и ресурсное обеспечение дисциплины17
	Методические указания по освоению дисциплины
9.	Материально-техническое обеспечение дисциплины

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цель и задачи дисциплины

Цель освоения дисциплины:

Теория функций комплексного переменного (кратко - ТФКП) изучает комплексные числа и функции комплексного переменного. В том числе, элементарные функции, являющиеся обобщением функций действительного переменного, изучаемых в школьном курсе математики и на первых двух курсах университета. Кроме того, ТФКП изучает аналитические функции комплексного переменного и их применения в различных разделах математики и математической физики.

Целью дисциплины

«Теория функций комплексного переменного» изучение является комплексных чисел и функций комплексного переменного методами алгебры, геометрии и математического анализа. Знания, полученные при изучении курса «Теория функций комплексного переменного», с одной стороны, формируют математическую культуру, с другой, составляют основу естественнонаучного подхода при исследовании природных явлений. Целью преподавания дисциплины является повышение уровня фундаментальной подготовки по математике, обучение основным понятиям и методам теории комплексного переменного, применяемых при фундаментальных и прикладных задач в области математического анализа и функционального анализа, дифференциальных уравнений и уравнений математической физики, физики и техники.

Задачи дисциплины

изучения дисциплины заключаются в овладении основными понятиями и методами ТФКП для исследования и решения задач алгебры, анализа, дифференциальных уравнений, в ознакомлении студентов приложениями ΤФКП при построении моделей естествознания исследовании физических явлений. В результате изучения ТФКП студенты знакомятся с классической частью комплексного анализа (теорией функций одного комплексного переменного) и учатся применять идеи и методы ТФКП для решения задач школьного курса математики и смежных математических дисциплин. В результате изучения дисциплины ТФКП студент должен:

 знать основные понятия и теоремы теории комплексных чисел и функций комплексного переменного;

- о знать и уметь применять основные методы ТФКП при исследовании функций комплексного переменного, при аналитическом продолжении элементарных функций действительного переменного;
- о обладать навыками применения методов ТФКП для интегрирования элементарных функций, при решении дифференциальных уравнений, при математической формулировке многих физических положений;
- о владеть навыками математического моделирования;
- о самостоятельно разбираться в математическом аппарате, содержащемся в специальной литературе по ТФКП.

Теория функций комплексного переменного имеет своей задачей □изучение методов и приемов решения задач ТФКП □формирование У студентов умений И навыков самостоятельного приобретения и применения знаний при исследовании и построении математических моделей; овладение студентами знаний и навыков по применению теории функций комплексного переменного В различных разделах физики экспериментальном и теоретическом исследовании физических явлений.

Программа ориентирована на развитие у студентов интереса к познанию математических и, в первую очередь, естественных и научных объектов. А также приобретение навыков самостоятельного изучения фундаментальных основ математических и физических наук и их приложений.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

ОПК – 8 Способен осуществлять педагогическую деятельность на основе специальных научных знаний.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в обязательную часть и является обязательной для изучения. Наиболее тесно она c линейной алгеброй связана необходима математическим Для анализом. усвоения дисциплины подготовка в объеме полной средней школы. Для математического анализа и математики изучение данной дисциплины необходимо как завершающее.

Программа дисциплины «Теория функций комплексного переменного» построена таким образом, что ее основные понятия и методы являются

составной частью программы дисциплины «Математический анализ» и органично переходят в этот курс. Общепризнано, что курс ТФКП является завершающей частью курса математического анализа действительной переменной. Все теоремы и методы математического анализа действительной переменной находят свое окончательное обобщение в курсе ТФКП.

Аналитические методы, изучаемые в теории функций комплексного переменного, представляют собой примеры и задачи, исследуемые в линейной алгебре и аналитической геометрии. Вся школьная тригонометрия является частным случаем свойств элементарных функций, определенных в комплексной плоскости. Это обстоятельство приводит к формирования у студентов элементов высокой математической культуры, необходимой для работы в школе. То же относится и к природе изучения многозначных функций. При изучении «Теории функций комплексного переменного» используются знания по математике в объеме программы средней общеобразовательной школы и первых двух курсов университета.

Дисциплина «Теория функций комплексного переменного» является составным элементом математического аппарата ряда курсов общей и теоретической физики. Знания, полученные при изучении курса «Теории функций комплексного переменного» широко применяются в курсе общей физики при изучении кинематики и динамики механического движения, электростатики, электричества и магнетизма, также в курсе теоретическая механика, электродинамика.

Требования к уровню освоения содержания курса
В результате изучения курса студент должен иметь представление:
□об основных понятиях теории функций комплексного переменного;
□об области применения теории функций комплексного переменного;
о методах теории функций комплексного переменного и теории краевых
задач в задачах механики и физики;
о связи теории функций комплексного переменного с физическими
науками (гидродинамика, теория потенциала, электродинамика, и т.д.).
Студент должен знать и уметь использовать:
□ комплексные числа, функции комплексного переменного, контурные
интегралы и вычеты при решении широкого круга задач математики и
физики
□понятия, представления и утверждения теории функций комплексного
переменного

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Показатель объема дисциплины	Форма обучения
	Заочная
Объем дисциплины в зачетных единицах	4
Объем дисциплины в часах	144
Контактная работа:	14.5
Лекции	4
Практические занятия	8
Контактные часы на промежуточную аттестацию:	2.5
Контрольная работа	0.2
Предэкзаменационная консультация	2
Экзамен	0.3
Самостоятельная работа	116
Контроль	13.5

3.2.Содержание дисциплины

По очной форме обучения

	Кол-во	часов
Наименование разделов (тем) Дисциплины с кратким содержанием	Лекции	Практические занятия
T 1 10	1	1
Тема 1. Комплексные числа	1	1
Операции над комплексными числами как над свободными векторами		
(сложение и умножение на число). Умножение и деление комплексных		
чисел. Модуль и аргумент комплексных чисел. Неравенства с модулем.		
Формулы Эйлера. Показательная функция. Синус и косинус кратных		
углов. Теоремы сложения для показательной функции, для синуса и косинуса. Извлечение корней из комплексных чисел. Изображение		
корней на комплексной плоскости. Формулы школьной тригонометрии.		
Тема 2. Множества, кривые и области	0,5	1
Задание кривых в параметрической форме. Односвязные и	0,3	1
многосвязные области. Ориентация плоскости. Граница многосвязных		
областей. Отображения и функции.		
Тема 3. Логарифмическая функция	0,5	1
Различные формы введения логарифмической функции. Решение	- 1-	
тригонометрических уравнений. Обратные тригонометрические		
функции и их свойства.		
Тема 4. Аналитические и гармонические функции	0,5	2
Понятия дифференцируемости и аналитичности. Необходимые и		
достаточные условия аналитичности. Понятие гармонической функции.		

Оператор Лапласа. Теорема о гармоничности действительной и мнимой частей аналитической функции. Восстановление действительной и мнимой частей аналитической функции.		
Тема 5. Элементарные функции и их свойства Целая линейная функция и ее геометрический смысл. Дробно-линейная	0,5	2
функция и ее свойства: круговое свойство, групповое свойство. Показательная и тригонометрические функции, степенная функция и радикал, логарифмическая и обратные тригонометрические функции.		
Тема 6. Интеграл в комплексной плоскости Понятие интеграла в комплексной плоскости. Свойства интеграла. Интегральная теорема Коши: для односвязной области, для многосвязной области. Примеры. Контурные интегралы. Интегральная формула Коши. Выражение значения аналитической функции в области через ее значения на границе односвязной или многосвязной области. Бесконечная дифференцируемость аналитической функции. Интеграл с переменным верхним пределом. Аналитичность интеграла с переменным верхним пределом. Формула Ньютона-Лейбница. Контурные интегралы. Теорема Мореры.	1	1
Итого	4	8

Формой промежуточной аттестации является экзамен на четвертом курсе в восьмом семестре.

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Темы для самостоятельног о изучения	Изучаемые вопросы	Количес тво часов	Формы самостоятельно й работы	Методические обеспечения	Формы отчетност и
1.Полярные координаты	Полярные координаты на плоскости и их связь с декартовыми координатами	10	Изучение учебной литературы, решение задач	http://mathhelpplanet.com/http: //eek.diary.ru/p165970944.htm	Опрос
2. Кривые, заданные в полярной системе координат	Кривая Эйлера, логарифмически е кривые	10	Изучение учебной литературы, решение задач	http://mathhelpplanet.com/http://eek.diary.ru/p165970944.htm	Опрос
3. Круговое свойство дробно- линейной функции	Отображение окружности или прямой на круг и (или) прямую	10	Изучение учебной литературы, решение задач	http://mathhelpplanet.com/http: //eek.diary.ru/p165970944.htm	Опрос
4. Групповое свойство дробно- линейной функции	Свойства группы, обратное отображение, композиция отображений	20	Изучение учебной литературы, решение задач	http://mathhelpplanet.com/http: //eek.diary.ru/p165970944.htm	Опрос
5. Множества и области на комплексной плоскости	Открытые множества, замкнутые множества,	20	Изучение учебной литературы, решение задач	http://mathhelpplanet.com/http: //eek.diary.ru/p165970944.htm	Опрос

6. Окрестности конечных точек и бесконечной удаленной точки	проколотые окрестности Окрестности конечных точек и бесконечной удаленной точки, кольца	9	Изучение учебной литературы, решение задач	http://mathhelpplanet.com/http: //eek.diary.ru/p165970944.htm	Опрос
7. Отображения, осуществляемые элементарными функциями 8. Линейная функция и ее свойства	Отображения синуса, косинуса, косинуса, экспоненты Разложение линейного отображения на три составляющих отображения	9	Изучение учебной литературы, решение задач Изучение учебной литературы, решение задач	http://mathhelpplanet.com/http: //eek.diary.ru/p165970944.htm http://mathhelpplanet.com/http: //eek.diary.ru/p165970944.htm	Опрос
9. Понятие о римановой поверхности	Конструкция римановой поверхности квадратного корня	19	Изучение учебной литературы, решение задач	http://mathhelpplanet.com/http: //eek.diary.ru/p165970944.htm	Опрос
Всего часов		116			

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в

процессе освоения образовательной программы

· · · · · · · · · · · · · · · · · · ·	
Код и наименование	Этапы формирования
компетенции	
ОПК-8 «Способен	1. Работа на учебных занятиях.
осуществлять	2. Самостоятельная работа.
педагогическую	
деятельность на основе	
специальных научных	
знаний»	

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оцениваемые	Уровень	Этап	Описание показателей	Критерии	Шкала
компетенции	сформированности	формирования		оценивания	оценивания
ОПК 8	Пороговый	1. Работа на	Знать:	Текущий	41-60
		учебных	• современные	контроль:	
		занятиях.	теории и методы в	Проверка	
		2.	области теории	дом.заданий	
		Самостоятельная	функции комплексного	Контр.работа,	
		работа.	переменного;	Экзамен	
			• значение и		
			место дисциплины в		
			общей картине мира.		
			Уметь:		
			• ясно и логично		
			излагать полученные		
			базовые знания;		
			•		

		демонстрироват		
		ь понимание общей		
		структуры дисциплины		
		и взаимосвязи с		
		другими дисциплинами		
		• решать задачи,		
		связанные с предметной		
		областью, с учетом		
		современных		
		достижений науки;		
		• применять		
		информационно-		
		коммуникационные		
		технологии для		
		эффективного решения		
		научных и прикладных		
		задач, связанных с		
		предметной областью.		
Продвинутый	1. Работа на	Знать:	Текущий	61-100
	учебных	• современные	контроль:	
	занятиях.	теории и методы в	Проверка	
	2.	области теории	дом.заданий	
	Самостоятельная	функции комплексного	Контр.работа	
	работа.	переменного;	Экзамен	
	1	• значение и		
		место дисциплины в		
		общей картине мира.		
		Уметь:		
		• ясно и логично		
		излагать полученные		
		базовые знания;		
		•		
		демонстрироват		
		ь понимание общей		
		структуры дисциплины		
		и взаимосвязи с		
		другими дисциплинами		
		• решать задачи,		
		связанные с предметной		
		областью, с учетом		
		современных		
		достижений науки;		
		• применять		
		информационно-		
		коммуникационные		
		технологии для		
		эффективного решения		
		научных и прикладных		
		задач, связанных с		
		предметной областью.		
		Владеть:		
		способностью к		
		логическому		
		рассуждению;		
		• основными		
		методами решения		
		задач,		
		сформулированными в		
		рамках предметных		
		областей.		

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примеры домашнего задания

Требуется выяснить геометрический смысл указанных соотношений:

- 1. |z-p| < R.
- **2.** |z-2|-|z+2|>3.
- **3.** Re z>C.

Каковы на сфере образы точек 1, -1, i, (1-i)/2?

При каком условии точки z и р являются стереографическими проекциями двух диаметрально противоположных точек сферы?

Примерные задания к текущему контролю (контрольная работа 1)

- 1. Найти сумму, разность, произведение и частное двух комплексных чисел. Изобразить результаты на комплексной плоскости. Найти их модули и аргументы.
- 2. Решить квадратные уравнения с комплексными коэффициентами и комплексным дискриминантом в комплексной плоскости. Корни уравнений изобразить на комплексной плоскости. Найти их модули и аргументы.
- 3. Вычислить радикалы (корни) второй, третьей, четвертой, пятой и шестой степени из комплексного числа. Каждый результат изобразить на комплексной плоскости.
- 4. Вычислить логарифмы комплексных чисел и каждый результат изобразить на комплексной плоскости.
- 5. С помощью формул Эйлера решить тригонометрическое уравнение и его нули изобразить на комплексной плоскости.
- 6. С помощью формул Эйлера доказать тригонометрические формулы приведения школьной математики.

Примерные задания к текущему контролю (контрольная работа 2)

- 1. Вычислить контурный интеграл, используя интегральную теорему Коши.
- 2. Вычислить контурный интеграл, используя интегральную формулу

Коши.

- 3. Разложить функцию в ряд Тейлора в круге сходимости.
- 4. Разложить функцию в ряд Лорана в кольце сходимости.
- 5. Найти особые изолированные точки аналитической функции и определить их порядок.
- 6. Вычислить вычеты функции во всех конечных особых точках и в бесконечно удаленной точке.
- 7. Вычислить контурный интеграл с помощью теории вычетов.
- 8. Вычислить интеграл с бесконечными пределами с помощью теории вычетов.

Примерные теоретические вопросы к текущему контролю

- 1. Комплексные числа. Свойства, операции над ними.
- 2. Комплексные числа. Геометрическая интерпретация.
- 3. Комплексные числа. Модуль, аргумент, тригонометрическая и показательная формы.
- 4. Функции комплексного переменного. (Элементарные функции комплексного переменного.)
- 5. Функции комплексного переменного (степенная, показательная, тригонометрические функции).
- 6. Функции комплексного переменного. (Линейная функция.)
- 7. Функции комплексного переменного. (Дробно-линейная функция.)
- 8. Дифференцирование функций комплексного переменного. Условия Коши Римана.
- 9. Аналитическая функция.
- 10. Конформные отображения.
- 11. Геометрический смысл модуля и аргумента производной.

Основными формами текущего контроля являются проверка выполнения домашних заданий, устные опросы группы во время практических занятий и промежуточная аттестация.

Проверка выполнения домашних заданий регулярно осуществляется преподавателем на занятиях. Также на занятиях проводятся текущие устные опросы студентов.

В промежуточную аттестацию включаются как теоретические вопросы, так и практические задания.

Студенты, не сдавшие промежуточную аттестацию, не допускаются к сдаче экзамена.

Примерные задания к экзамену

- 1. Дана функция. Выделить ее действительную и мнимую части. Проверить условия Коши-Римана для этой функции. Сделать вывод об аналитичности этой функции.
- 2. Задана действительная или мнимая часть аналитической функции. Требуется с помощью криволинейного интегрирования построить гармонически сопряженную к ней мнимую и (или) действительную часть. Затем построить искомую аналитическую функцию комплексного переменного.
- 3. Задана действительная функция двух действительных переменных. Требуется вычислить значение оператора Лапласа от этой функции.
- 4. Доказать все формулы приведения для синуса в комплексной плоскости.
- 5. Доказать все формулы приведения для косинуса в комплексной плоскости.
- 6. Доказать все формулы приведения для тангенса в комплексной плоскости.
- 7. Доказать все формулы приведения для котангенса в комплексной плоскости.
- 8. Вывести формулу для вычисления синуса тройного угла через тригонометрические функции однократного угла в комплексной плоскости.
- 9. Вывести формулу для вычисления косинуса тройного угла через тригонометрические функции однократного угла в комплексной плоскости.
- 10. Вывести формулу для вычисления тангенса тройного угла через тригонометрические функции однократного угла в комплексной плоскости.
- 11. Вывести формулу для вычисления котангенса тройного угла через тригонометрические функции однократного угла в комплексной плоскости.
- 12. В комплексной плоскости вывести формулу для вычисления обратной тригонометрической функции «арксинус» через вычисление логарифмической функции.
- 13.В комплексной плоскости вывести формулу для вычисления обратной тригонометрической функции «арккосинус» через вычисление логарифмической функции.
- 14.В комплексной плоскости вывести формулу для вычисления обратной тригонометрической функции «арктангенс» через вычисление логарифмической функции.
- 15.В комплексной плоскости вывести формулу для вычисления обратной тригонометрической функции «арккотангенс» через вычисление логарифмической функции.
- 16. Вывести формулы для вычисления синуса суммы (разности) двух аргументов в комплексной плоскости.

- 17. Вывести формулы для вычисления косинуса суммы (разности) двух аргументов в комплексной плоскости.
- 18. Вывести вторую формулу Муавра в комплексной плоскости как обратную к степенной функции.
- 19.Вывести формулу для вычисления логарифмической функции в комплексной плоскости как обратную для показательной.
- 20.Вывести формулу Эйлера в комплексной плоскости путем разложения в степенной ряд показательной функции с чисто мнимым аргументом.
- 21. Разложить заданную функцию в ряд Тейлора в круге сходимости с центром в некоторой конечной комплексной точки.
- 22. Разложить заданную функцию в ряд Лорана в кольце сходимости с центром в некоторой конечной или бесконечно удаленной комплексной точки.
- 23. Вычислить контурные интегралы в следующих случаях:
 - А) все особые точки находятся внутри контура интегрирования,
 - Б) часть особых точек находится внутри, а часть вне контура интегрирования.
- 24. Вычислить несобственные интегралы с бесконечными пределами интегрирования, используя теорему Коши о вычетах.

Примерные теоретические вопросы к экзамену

- 1. Комплексные числа. Свойства, операции над ними.
- 2. Комплексные числа. Геометрическая интерпретация.
- 3. Комплексные числа. Модуль, аргумент, тригонометрическая и показательная формы.
- 4. Функции комплексного переменного. (Элементарные функции комплексного переменного.)
- 5. Функции комплексного переменного (степенная, показательная, тригонометрические функции).
- 6. Функции комплексного переменного (Линейная функция.)
- 7. Функции комплексного переменного (Дробно-линейная функция.)
- 8. Дифференцирование функций комплексного переменного. Условия Коши Римана.
- 9. Аналитическая функция.
- 10. Конформные отображения.
- 11. Геометрический смысл модуля и аргумента производной.
- 12. Аналитические функции. Связь с гармоническими. (Восстановление аналитической функции по ее действительной или мнимой части.)
- 13. Интегрирование по комплексной переменной. Свойства интеграла.
- 14. Теорема Коши для односвязной области.
- 15. Теорема Коши для многосвязной области.
- 16.Интегральная формула Коши.
- 17. Производные высших порядков для аналитической функции.

- 18. Теоремы о среднем.
- 19. Ряды Тейлора.
- 20.Интеграл типа Коши.
- 21. Ряды Лорана.
- 22.Особые точки и их классификация.
- 23. Вычеты. Теорема Коши о вычетах. Вычисление вычетов. Вычет в бесконечности. Теорема о полной сумме вычетов.
- 24. Логарифмические вычеты. Принцип аргумента.
- 25. Вычисление интегралов с помощью вычетов.

Для допуска к экзамену нужно выполнить все домашние задания и сдать промежуточный контроль. При этом разрешается использовать записи, сделанные студентом на практических занятиях, во время самостоятельной подготовки. Студент должен ответить на один теоретический вопрос и решить несколько предложенных задач. Студент допускается к экзамену, если он обстоятельно ответил на вопрос, и решил задачи. Допуск к экзамену также может быть выставлен студенту, если он допустил при решении задач и ответе на теоретический вопрос одну-две негрубые ошибки.

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Название компонента	Распределение
	баллов
І. Выполнение домашних заданий	30
II. Выполнение контрольных работ	30
III. Результат экзамена	40
Итого	100

Требования к выполнению домашнего задания

Критерий оценок

В каждом домашнем задании три задачи.

Оценка "отлично" (21-30 баллов) характеризует решение всех трех примеров из приведенных заданий или решение двух примеров из приведенных заданий, но при условии предоставления черновиков не получившегося задания.

Оценка "хорошо" (11-20 баллов) характеризует решение двух примеров из приведенных заданий.

Оценка "удовлетворительно" (до 10 баллов) характеризует решение одного примера из приведенных заданий.

Требования к выполнению контрольных заданий

Критерий оценок

В каждой контрольной работе три задания.

Оценка "отлично" (21-30 баллов) характеризует решение всех трех примеров из приведенных заданий.

Оценка "хорошо" (11-20 баллов) характеризует решение двух примеров из приведенных заданий.

Оценка "удовлетворительно" (до 10 баллов) характеризует решение одного примера из приведенных заданий.

Требования к экзамену

Критерии оценок

Оценка "отлично" (31-40 баллов) характеризует полное усвоение теоретического и практического материала, студент умеет доказать все теоремы из лекционного курса и решает все задачи и примеры из приведенных заданий.

Оценка "хорошо" (21-30 баллов) характеризует основное усвоение теоретического и практического материала, студент умеет доказать основные теоремы из лекционного курса и решает основные задачи и примеры из приведенных заданий.

Оценка "удовлетворительно" (11-20 баллов) характеризует знание (без доказательства) основных теорем и формул курса, студент умеет решать задачи и примеры из приведенных заданий, являющиеся обобщением задач школьного курса математики.

Оценка "неудовлетворительно" (до 10 баллов баллов) выставляется студенту, если он не усвоил основные теоремы и формул курса и если студент не умеет решать задачи и примеры из приведенных заданий, являющиеся обобщением задач школьного курса математики.

Итоговая оценка знаний студентов по изучаемой дисциплине составляет 100 баллов, которые конвертируется в оценку по пятибалльной шкале (итоговая форма контроля – экзамен), по следующей схеме:

Экзамен. Оценка на экзамене составляет 40 баллов, которые получаются в результате дифференцированной оценки знаний студентов исходя из сложности задания, приведенного в предложенном задании. Задание для экзамена состоит из двух вопросов (40 баллов: по 20 баллов за ответ на каждый из двух вопросов).

Распределение баллов:

Шкала оце	нок при 100-балльной системе за	
экзамен		
		Оценка по 100-бальной системе
Оценка по	5-бальной системе	
5	Отлично	81 —100
4	Хорошо	61 — 80
3	Удовлетворительно	41 — 60
2	Неудовлетворительно	21 — 40
1	Необходимо повторное изучение	0 — 20

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная литература

- 1. Геворкян, Э.А. Теория функций комплексной переменной [Электронный ресурс]: учебное пособие / Э.А. Геворкян, А.С. Фокст. М.: Московский государственный университет экономики, статистики и информатики, 2004. URL: http://biblioclub.ru/index.php?page=book&id=90747. 25.01.2016.
- 2. Латышев А.В. Введение в теорию функций комплексного переменного [Текст] : учеб.-метод.пособие : лекции и практ.занятия / А. В. Латышев. М. : МГОУ, 2007. 100с.

6.2. Дополнительная литература

- 3. Шабат Б.В. Введение в комплексный анализ. Ч. 1, 2. М., Наука, 1976.
- 4. Привалов И.И. Введение в теорию функций комплексного переменного. М., Наука, 1977.
- 5. Маркушевич А.И. Краткий курс теории аналитических функций. М., Наука, 1978.
- 6. Бицадзе А.В. Основы теории аналитических функций. М., Наука, 1972.
- 7. Евграфов М.А. и др. Сборник задач по теории функций комплексного переменного. М., Наука, 1975.

- 8. Волковысский Л.И., Лунц Г.Л., Араманович И.Г. Сборник задач по теории функций комплексного переменного. М., Наука, 1975.
- 9. Босс В. Лекции по математике. Т.9. ТФКП. М., Изд-во УРСС, 2007.
- 10. Боярчук А.К. Справочное пособие по высшей математике. Ч.4. Функции комплексного переменного. Теория и практика. М., Изд-во УРСС, 1999.

6.3. Ресурсы информационно-телекоммуникационной сети «Интернет»

http://mathhelpplanet.com, http://eek.diary.ru/p165970944.htm

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Для использования методических указаний по освоению дисциплины следует использовать следующую литературу:

- 1. Грань Т.Н., Холина С.А. Методические рекомендации по проведению лекционных занятий.
- 2. Грань Т.Н., Холина С.А. Методические рекомендации об организации выполнения и защиты курсовой работы.
- 3. Грань Т.Н., Холина С.А. Методические рекомендации по проведению лабораторных и практических занятий.

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows Microsoft Office Kaspersky Endpoint Security

Информационные справочные системы:

Система ГАРАНТ Система «КонсультантПлюс»

Профессиональные базы данных:

fgosvo.ru pravo.gov.ru www.edu.ru

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения занятий лекционного и семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные учебной мебелью, доской, демонстрационным оборудованием.
- помещения для самостоятельной работы, укомплектованные учебной мебелью, персональными компьютерами с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду МГОУ;
- помещения для хранения и профилактического обслуживания учебного оборудования, укомплектованные мебелью (шкафы/стеллажи), наборами демонстрационного оборудования и учебно-наглядными пособиями;
- лаборатория, оснащенная лабораторным оборудованием: комплект учебной мебели, проектор, проекционная доска, персональный компьютер с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду МГОУ.