Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Дата подписания: 24.10.2024 14:21:41

Уникальный программный ключ:

6b5279da4e034bff679172803da5b7b559fc69e2

МИНИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ

Государственное образовательное учреждение высшего образования Московской области МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ (МГОУ)

Биолого-химический факультет

Кафедра теоретической и прикладной химии

Согласовано управлением организации и

контроля качества образовательной

леятельности

«22» июня 2021 г. Начальник управления Одобрено учебно-методическим советом

Протокол «22» июня 2021 г. № 5

Председатель

О.А. Шестакова /

Рабочая программа дисциплины

Е. Суслин /

Бионеорганическая химия

Направление подготовки

06.03.01 Биология

Профиль:

Биомедицинские технологии

Квалификация

Бакалавр

Форма обучения

Очная

биолого-химического факультета

Протокол от «17» июня 2021 г. № 7

Председатель УМКом

Согласовано учебно-методической комиссией Рекомендовано кафедрой теоретической и

прикладной химии

Протокол от «10» июня 2021 г. № 11

Зав. кафедрой

Мытиши 2021

/И.Ю. Лялина /

Автор-составитель: Свердлова Наталья Дмитриевна, к.х.н., доцент кафедры теоретической и прикладной химии;

Рабочая программа дисциплины «Бионеорганическая химия» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 06.03.01 Биология, утвержденного приказом МИНОБРНАУКИ РОССИИ № 920 от 7 августа 2020 г.

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» и является элективной дисциплиной (модулем).

Год начала подготовки (по учебному плану) 2021

СОДЕРЖАНИЕ

1.	ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ	4
2.	МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	4
3.	ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	4
	УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ УЧАЮЩИХСЯ	7
	ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ ТЕСТАЦИИ ПО ДИСЦИПЛИНЕ	
6.	УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	17
7.	МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ	18
8.	ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ	18
	ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	18
9. I	МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	19

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цель и задачи дисциплины

Цель освоения дисциплины -дать представление об основных свойствах и методах исследования бионеорганических соединений, научить использовать базис законов и понятий общей, неорганической, координационной и биохимии для усвоения и интерпретации углубленных знаний по специфическим разделам химии на стыке наук.

Задачи дисциплины:

- показать роль бионеорганической химии в системе химических и биологических наук;
- сформировать представления о комплексообразовании биометаллов с неорганическими и органическими лигандами;
- рассмотреть физиологические функции данных комплексов в организме в норме, а также негативные воздействия комплексов тяжелых металлов;
- показать применение комплексов биометаллов с различными лигандами в медицине и биологии.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины должна быть сформированы компетенции:

ДПК -1 Способен проводить научно-исследовательские лабораторные работы и экспертизу биологического материала

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» и является элективной дисциплиной (модулем).

Освоение курса «Бионеорганическая химия" является основой изучения дисциплин «Физиология и биохимия растений», "Физиология человека и животных", "Основы физиологического действия фармацевтических препаратов", а также для прохождения специализированной практики по биотехнологии и успешной последующей профессиональной деятельности.

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Показатель объема дисциплины	Форма обучения
	Очная
Объем дисциплины в зачетных единицах	2
Объем дисциплины в часах	72
Контактная работа	32,2
Лекции	16
Лабораторные занятия	16
Контактные часы на промежуточную аттестацию:	0,2
Зачет	0,2
Самостоятельная работа	32
Контроль	7,8

3.2.Содержание дисциплины

	Кол-в	о часов
Наименование разделов (тем) дисциплины с кратким содержанием	Лекции	лабораторные занятия
Тема 1 . Предмет и области исследования бионеорганической	1	
химии. Место бионеорганической химии среди традиционных химических и биологических дисциплин. Задачи и проблемы бионеорганической химии, основные направления развития. Различия в объекте исследования бионеорганической, элементорганической, органической и неорганической химии. Предмет бионеорганической химии - структура и функции металлоферментов; взаимодействие металлов с биомолекулами; направленное создание биологически активных соединений металлов		
Тема 2. Биологическая роль неметаллов. Химические элементы в биосфере. Макро- и микроэлементы. Кислород и его роль в дыхательном цикле живых организмов. Биологическая роль озона. Углерод, значение его неорганических соединений для человека. Физиологическая роль водорода в составе воды. Азот: воздействие неорганических соединений азота на живые организмы. Проблема связанного азота. Фосфор - элемент-органоген и его роль в обмене веществ. Сера и ее роль в метаболизме в составе белков; сульфаты и сероводород в желудочно-кишечном тракте. Галогены: роль хлорид-ионов в создании внутренней среды организма, создании буферной системы крови, регуляции водно-солевого обмена, в пищеварении.	2	6
Тема 3. Биометаллы s-элементы и d-элементы. Биологическая роль их ионов. Натрий, калий, кальций, магний, медь, цинк, марганец, железо, кобальт, молибден. Особенности электронного строения и способность к комплексообразованию. Распределение ионов во внутри - и внеклеточном пространстве. Значение в создании электролитной среды организма, передаче нервного импульса, работе ферментных систем.	3	4
Тема 4. Биолиганды - неорганические вещества, аминокислоты, пептиды, белки,	2	

Общая характеристика основных типов биолигандов.			
Неорганические галогенид-ионы (F, C1, Г), сульфат - и нитрат-			
ионы, а также гидроксил-, фосфат - и карбонат-ионы, их вклад в			
энергетическую «копилку» живого организма. Нейтральные			
молекулы H_2O , O_2 , CO_2 , NH_3 , их значение для метаболизма,			
питания и жизни организма в целом. Аминокислоты, пептиды,			
белки как биополимеры. Строение молекул, донорные			
группировки (карбоксильные и аминогруппы). Роль			
ациклических и циклических форм углеводородов в			
комплексообразовании. Донорные центры молекул:			
карбонильная и гидроксильная группировки.			
Строение нуклеиновых кислот и нуклеиновых оснований.			
Донорные центры для связывания с металлами для азотистых			
оснований (атомы азота и кислорода), нуклеозидов			
(гидроксогруппы) и нуклеотидов (фосфатные группы).			
Липиды: их классификация, состав и способность к			
комплексообразованию. Донорные центры стероидов:			
(карбонильная, карбоксильная и гидроксо- группы).			
Фосфолипиды и гликолипиды как полидентатныелиганды:			
состав, строение, донорные группировки (гидроксо-, амино-,			
фосфатная группы).			
Тема 5. Образование устойчивых металлокомплексов с	2	2	
биолигандами.			
Основные представления о химической связи в			
координационных соединениях биометаллов и биолигандов.			
Роль электростатический сил, ковалентных и донорно-			
акцепторных взаимодействий. Комплексы аминокислот и			
пептидов с биометаллами. Участие различных групп и донорных			
атомов аминокислот и пептидов в комплексообразовании с			
биометаллами. Роль концевых NH-групп, СООН-групп, а также			
пептидных групп в связывании ионов металлов. Взаимодействие			
нуклеиновых кислот с ионами металлов (основные			
закономерности). Взаимодействие белков с ионами металлов			
(основные закономерности). Хелатный эффект в			
комплексообразовании. Его роль в устойчивости комплексов.			
Макроциклический эффект. Взаимная избирательность и			
сродство биометаллов и лигандов. Принцип ЖМКО.	2	2	
<i>Тема 6.</i> Биологическая роль биокомплексов железа.	2	2	
Гемовые и негемовые белки. Миоглобин, Гемоглобин,			
ферритин, ферредоксин. Их строение и физиологичекая роль	2		
<i>Тема 7.</i> Биологическая роль биокомплексов меди	2		
Церуллоплазмин, гемоцианин.			
Супероксиддисмутаза – фермент на основе			
комплесообразователей катионов меди и цинка.			
Строение, физиологичесская роль этих ферментов.	1	1	
<i>Тема 8.</i> Лекарственные средства на основе биоактивных	1	1	
координационных соединений.			
Создание и использование металлокомплексов меди. Цинка,			
ртути, свинца, железа, хрома, лития, серебра с			
сульфаниламидами, порфиринами, тиосемикарбазонами и др.			
для лечения гипертензии, неврологических заболеваний,			
микробных инфекций.			

Металлокомплексы на основе металлов платиновой группы –		
противоопухолевые препараты.		
<i>Тема 9</i> . Неорганические биоматериалы.	1	1
Биоминерализация в живом организме. Создание имитационных		
систем на основе пресыщенных растворов соли с трехмерной		
сеткой-матрицей из супрамолекулярных структур.		
Использование искусственных материалов для остеосинтеза		
(лечения переломов, травм, врожденных патологий кости и др.).		
Итого	16	16

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Темы для самостоятельн ого изучения	Изучаемые вопросы	Коли честв о часов	Формы самостоятель ной работы	Методически е обеспечения	Формы отчетност и
Предмет и области исследования бионеорганичес кой химии.	Основные понятия бионеорганической химии. Классификация элементов по их массовым долям в организме. Синергизм и антагонизм действия	2	Работа с литературой и интернет ресурсами	Рекомендуема я литература Интернетресурсы	Доклады
Биологическая роль неметаллов.	Особенности электронного строения атомов неметаллов. Биологическая роль их неорганических соединений.	4	Работа с литературой и интернет ресурсами	Рекомендуема я литература Интернетресурсы	доклады
Биометаллыз- элементы и d- элементы. Биологическая роль их ионов.	Особенности электронного строения атомов s-и d-биометаллов. Способность к комплексообразова нию с неорганическимил игандами.	4	Работа с литературой и интернет ресурсами	Рекомендуема я литература Интернетресурсы	доклады
Биолиганды - неорганические вещества, аминокислоты,	Состав, структура и свойства аминокислот, пептидов и белков.	4	Работа с литературой и интернет ресурсами	Рекомендуема я литература интернетресурсы	доклады

пептиды, белки,					
.Биолиганды - углеводы, нуклеиновые кислоты, липиды.	Состав, ациклические и циклические структуры углеводов. Состав и свойства нуклеиновых кислот и липидов. Донорные группировки молекул.	4	Работа с литературой и интернет ресурсами	Рекомендуема я литература Интернетресурсы	Доклады
Образование устойчивых металлокомпле ксов с биолигандами.	Основные понятия координационной химии. Теории химической связи в комплексах: теория валентных связей и теория кристаллического поля.	4	Работа с литературой и интернет ресурсами	Рекомендуема я литература интернетресурсы	тест
Кислородсодер жащиеметаллоп ротеиды на примере гемоглобина	Структура порфиринов. Гемовые и негемовые формы железа в организме. Структура молекулы гемоглобина.	4	Работа с литературой и интернет ресурсами	Рекомендуема я литература интернетресурсы	тест
Лекарственные средства на основе биоактивных координационн ых соединений.	Металлокомплекс ы, лежащие в основе лекарств, применяемых для лечения гипертензии, онкологических заболеваний.	4	Работа с литературой и интернет ресурсами	Рекомендуема я литература интернетресурсы	реферат
Неорганические биоматериалы.	Использование искусственных материалов для остеосинтеза и моделирования тканей человека	2	Работа с литературой и интернет ресурсами	Рекомендуема я литература интернетресурсы	реферат
Итого		32			

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Формируемые компетенции:

Код и наименование	Этапы формирования
компетенции	
ДПК - 1 Способен проводить	1. Работа на лекциях и защита лабораторных работ
научно-исследовательские лабораторные работы и	2. Выполнение заданий для самостоятельного
экспертизу биологического	изучения
материала	

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оценивае мые компетен	Уровень сформиров анности	Этап формирования	Описание показателей	Критерии оценивания
ции	анности			
ДПК - 1	Пороговый	1. Работа на лекциях и защита лабораторны х работ 2. Доклад на занятиях 3. Выполнение заданий для самостоятель ного изучения	основы бионеорганической химии как комплексной науки; биологическую роль неметаллов и металлов, входящих в органические соединения,структуру и свойства биолигандов, механизмы образования и структуру металлокомплексов с биолигандами; функции металлокомплексов с биолигандами; уметь применять физикохимические методы для исследования металлокомплексов с биолигандами; соблюдать правила	контроль посещений, опрос и собеседование, выполнение лабораторных работ, тестирование

	эксплуатации лабораторного оборудования	
Продвинут ый	уметь Планировать и реализовывать физико- химическое исследование комплексов биогенных элементов; Владеть навыками планирования, проведения, анализа и интерпретации результатов научного эксперимента	Самостоятельная работа, реферат, доклад и презентация, зачет.

Шкала оценивания посещения и активности на занятиях

Оцениваемые параметры	Баллы
регулярное посещение занятий, высокая активность на практических занятиях, содержание и изложение материала отличается логичностью и смысловой завершенностью, студент показал владение материалом, умение четко, аргументировано и корректно отвечать на поставленные вопросы, отстаивать собственную точку зрения.	15-20
систематическое посещение занятий, участие на практических занятиях, единичные пропуски по уважительной причине и их отработка, изложение материала носит преимущественно описательный характер, студент показал достаточно уверенное владение материалом, однако недостаточное умение четко, аргументировано и корректно отвечать на поставленные вопросы и отстаивать собственную точку зрения.	10-15
нерегулярное посещение занятий, низкая активность на практических занятиях, студент показал неуверенное владение материалом, неумение отстаивать собственную позицию и отвечать на вопросы.	5-10
регулярные пропуски занятий и отсутствие активности работы, студент показал незнание материала по содержанию дисциплины.	0 - 5

Максимальное количество баллов - 20

Шкала оценивания опроса и собеседования

Уровень оценивания	Критерии оценивания	Баллы
Опрос и собеседование	Свободное владение материалом	5

Достаточное усвоение материала	3
Поверхностное усвоение материала	1
Неудовлетворительное усвоение материала	0

Максимальное количество баллов – 10 (по 5 баллов за каждый опрос).

Шкала оценивания выполнения лабораторной работы

Критерии оценивания	Баллы
Работа выполнена полностью по плану и сделаны правильные выводы;	5
Работа выполнена правильно не менее чем на половину или допущена существенная ошибка	3
Работа не выполнена	0

Максимальное количество баллов – 20 (по 5 баллов за работу).

Шкала оценивания тестирования

Для оценки тестовых работ используются следующие критерии:

0-20 % правильных ответов оценивается как «неудовлетворительно» (2-балла);

30-50% - «удовлетворительно» (3-5 баллов);

60-80% - «хорошо» (6-8 баллов);

80-100% – «отлично» (8-10 баллов).

Максимальное количество баллов - 10

Шкала оценивания самостоятельной работы

Оцениваемые параметры	Баллы
Студент умеет выполнять задания и решать задачи творческого характера. Изложение полученных знаний полное. Самостоятельно выделены существенные признаки изученного с помощью приемов анализа и синтеза, сформулированы обобщения и выводы. студент умеет выделять противоречия в изученном материале и определять проблему. Способен использовать изученные способы действия и междисциплинарные методы самостоятельно.	9- 10
Студент умеет выполнять задания и решать задачи реконструктивного характера. Изложение полученных знаний полное. Допускаются несущественные ошибки, исправленные после указаний на них преподавателя. При выделении существенных признаков изученного допускаются несущественные ошибки. Студент умеет выделять противоречия с помощью наводящих вопросов преподавателя., Использует только изученные способы лействия	6-8

Студент умеет выполнять задания и решать задачи репродуктивного	
характера. Изложение полученных знаний неполное, есть ошибки,	
исправленные с помощью преподавателя. Воспроизведены только основные	
теоретические положения, отдельные понятия, описаны факты без понимания	
существенных связей. Студент испытывает затруднения при выявлении	3-5
существенных признаков изученного. Противоречия и проблемы изученного	
материала выявляет только с помощью преподавателя. Выбор и	
использование изученных способов деятельности осуществляет только с	
помощью преподавателя.	
Студент не умеет выполнять задания и решать задачи репродуктивного	
характера. Изложение материала неполное, Ошибки не исправлены даже с	
помощью преподавателя Изложение знаний на уровне представлений,	0-2
выявление случайных признаков изученного. Студент не умеет делать	0-2
обобщения и выводы, выявлять противоречия и проблемы в изученном	
материале. Не осуществляет выбор и использование изученных способов	

Максимальное количество баллов - 10

Шкала оценивания реферата

Критерии оценивания	Баллы
Содержание соответствует поставленным цели и задачам, изложение материала отличается логичностью и смысловой завершенностью, студент показал владение материалом, умение четко, аргументировано и корректно отвечать на поставленные вопросы, отстаивать собственную точку зрения	9-10
Содержание недостаточно полно соответствует поставленным цели и задачам исследования, работа выполнена на недостаточно широкой источниковой базе и не учитывает новейшие достижения науки, изложение материала носит преимущественно описательный характер, студент показал достаточно уверенное владение материалом, однако недостаточное умение четко, аргументировано и корректно отвечать на поставленные вопросы и отстаивать собственную точку зрения	6-8
Содержание не отражает особенности проблематики избранной темы; содержание работы не полностью соответствует поставленным задачам, источниковая база является фрагментарной и не позволяет качественно решить все поставленные в работе задачи, работа не учитывает новейшие достижения историографии темы, студент показал неуверенное владение материалом, неумение отстаивать собственную позицию и отвечать на вопросы	3-5
Работа не имеет логичной структуры, содержание работы в основном не соответствует теме, источниковая база исследования является недостаточной для решения поставленных задач, студент показал неуверенное владение материалом, неумение формулировать собственную позицию.	0-2

Максимальное количество баллов – 10.

Шкала оценивания доклада

Показатель	Балл
Доклад соответствует заявленной теме, выполнен с привлечением	5
достаточного количества научных и практических источников по	
теме, магистрант в состоянии ответить на вопросы по теме доклада.	
Доклад в целом соответствует заявленной теме, выполнен с	3
привлечением нескольких научных и практических источников по	
теме, магистрант в состоянии ответить на часть вопросов по теме	
доклада.	
Доклад не совсем соответствует заявленной теме, выполнен с	1
использованием только 1 или 2 источников, магистрант допускает	
ошибки при изложении материала, не в состоянии ответить на	
вопросы по теме доклада.	

Шкала оценивания презентации

Показатель	Балл
Представляемая информация систематизирована, последовательна	5
и логически связана. Проблема раскрыта полностью. Широко	
использованы возможности технологии PowerPoint.	
Представляемая информация в целом систематизирована,	3
последовательна и логически связана (возможны небольшие	
отклонения). Проблема раскрыта. Возможны незначительные	
ошибки при оформлении в PowerPoint (не более двух).	
Представляемая информация не систематизирована и/или не совсем	1
последовательна. Проблема раскрыта не полностью. Выводы не	
сделаны или не обоснованы. Возможности технологии PowerPoint	
использованы лишь частично.	

Максимальное количество баллов - 10

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы.

Тематика лабораторных работ

- 1. Определение содержания натрия и калия в биологических жидкостях методом пламенной фотометрии.
- 2. Определение содержания фтора в почечных камнях потенциометрическим микрометодом.
- 3. Определение содержания железа в биологических жидкостях спектрофотометрическим методом.
- 4. Гидролиз нуклеопротеинов дрожжей.
- 5. Определение константы нестойкости комплексов меди кондуктометрическим методом.
- 6. Образование металлокомплексов с биолигандами. Теория жестких и мягких кислот и оснований.
- 7. Применение металлокомплексов с биолигандами в медицине.

Примеры тестовых заданий

- 1. Лучшими комплексообразователями являются
 - 1) S-элементы
 - 2) D-элементы
 - 3) Р-элементы
 - 4) Г-элементы
- 2. Между внешней и внутренней сферами комплексных соединений образуется химическая связь
 - 1) Ковалентная
 - 2) Водородная
 - 3) Ионная
 - 4) Металлическая
- 3. Хелаты-это
 - 1) Циклические внутрикомплексные соединения металлов с полидентатными лигандами
 - 2) Многоядерные комплексы металлов с монодентатными лигандами
 - 3) Нейтральные комплексы с лигандами-молекулами СО
 - 4) Катионные комплексы металлов с монодентатнымилигандами.
- 4. У молекул аминокислот при комплексообразовании донорными группировками являются
 - 1) -COOH, PO₄³-
 - 2) -NH₂ +, -COOH
 - 3) PO_4^{3-} , $-NH_2^+$,
 - 4) -NH₂⁺, OH⁻
- 5. В молекулах фосфолипидов при комплексообразовании донорными группировками не являются
 - 1) Амино-группа
 - 2) Гидроксо-группа
 - 3) Фосфатная группа
 - 4) Углеводородная цепочка
- 6. Согласно теории Льюиса жесткими кислотами являются частицы
 - 1) малого размера, акцепторы электронной пары
 - 2) с высокой электроотрицательностью, доноры электронной пары
 - 3) Большого размера с малым положительным зарядом
 - 4) Большого размера, доноры электронной пары.
- 7. Мягкие кислоты перечислены в ряду
 - 1) H⁺, Na⁺, Li⁺
 - 2) Ag^+, Cu^+, Pb^{2+}
 - 3) OH-, F-, Cl-
 - 4) Γ , C_6H_6 , C_2H_4
- 8. С увеличением степени окисления атома металла жесткость кислоты Льюиса
 - 1) Растет
 - 2) Уменьшается
 - 3) Не меняется
 - 4) Сначала растет, затем уменьшается
- 9. Серусодержащие аминокислоты преимущественно соединяются
 - 1) С жесткими кислотами
 - 2) С жесткими основаниями
 - 3) С мягкими кислотами
 - 4) С мягкими основаниями
- 10. Факторами, определяющими устойчивоекомплексообразование металлов с биолигандами являются

- 1) Наличие донорной группировки лиганда
- 2) Нужнаяконформация молекулы лиганда
- 3) Хелатный эффект
- 4) Все перечисленные факторы.

Темы докладов и презентаций

- 1. Классификация элементов по их массовым долям в организме.
- 2. Биологическая роль неорганических соединений неметаллов.
- 3. Особенности электронного строения атомов s- и d-биометаллов.
- 4. Состав, структура и свойства аминокислот, пептидов и белков
- 5. Состав и свойства нуклеиновых кислот и липидов.
- 6. Классификация углеводов. Строение и свойства полисахаридов. Роль ациклических и циклических форм в комплексообразовании.
- 7. Кислород и его роль в дыхательном цикле живых организмов. Биологическая роль озона.
- 8. Углерод, значение его неорганических соединений для человека.
- 9 Сера и ее роль в метаболизме в составе белков; сульфаты и сероводород в желудочно-кишечном тракте.
- 10. Галогены: роль хлорид-ионов в создании внутренней среды организма.

Темы рефератов:

- 1. Биологическая роль натрия, калия и лития.
- 2. Биологическая роль элементов триады железа.
- 3. Биологическая роль меди, серебра и золота.
- 4. Структуры молекулы белка. Белки как биолиганды.
- 5. Строение молекулы гемоглобина. Дезоксигемоглобин, метгемоглобин, оксигемоглобин.
- 6. Особенности строения нуклеиновых кислот. Нуклеиновые кислоты как биолиганды.
- 7. Ферменты как комплексы биометаллов с биолгиандами (на примерах карбоксиангидразы и карбоксипептидазы).
- 8. Лекарственные формы на основе комплексов меди, серебра и золота как бактерицидные средства. Их физиологичекое действие.
- 9. Препараты на основе соединений магния, кальция и алюминия антацидные средства.
- 10. Применение комплексов европия во флуоресцентномиммуноаналазе.
- 11. Препараты на основе комплксов железа, используемые для лечения патологий кровеносной системы
- 12. Комплексы платины, лежащие в основе препаратов для лечения онкологических заболеваний.
- 13. Биоминерализация и ее роль для создания неорганических полимерных композитов, имитирующих свойства биологических тканей.
- 14. Физиологическое воздействие фтора на организм человека.
- 15. Строение молекулы хлорофилла. Его роль в энергетическом обеспечении окислительно-восстановительных процессов при фотосинтезе.

Вопросы к зачету

- 1.Место бионеорганической химии среди традиционных химических дисциплин и основные направления ее развития.
- 2. Объект исследования в бионеорганической, элементорганической, органической и неорганической химии.
- 3. Характеристика свойстватомовбиометаллов.
- 4.Основные понятия и категории координационной химии в применении к характеристике

комплексных соединений биометаллов с биолигандами.

- 5. Геометрия различных комплексов биометаллов в связи с наиболее распространенными координационными числами последних. 6. Биологические функции ионов непереходных биометаллов в связи с их химией, типами и конфигурацией связей в комплексах invitro.
- 7. Биологические функции ионов переходных биометаллов в связи с их химией, типами и конфигурацией связей в комплексах invitro. 8. Классификация реальных кислот и оснований по их электронно-химическим характеристикам.
- 9. Применимость концепции жестких и мягких кислот и оснований к объяснению избирательности и специфичности металлолигандного взаимодействия.
- 10. Химические связи в координационных соединениях биометаллов и биолигандов.
- 11. Комплексы аминокислот и пептидов с биометаллами.
- 12. Основные закономерности взаимодействия нуклеиновых кислот с ионами металлов.
- 13.Взаимодействие белков с ионами металлов. Хелатный эффект. Макроциклический эффект.
- 14. Кинетика комплексообразования металл-биолиганд. «Общая» и «ступенчатая» константы устойчивости.
- 15. Функции, выполняемые ионом металла в ферментативном катализе. Критерий истинности металлоферментов.
- 16.Влияние белкового лиганда на координацию молекул кислорода в гемоглобине и миоглобине.
- 17. Гемоцианин, Гемэритрин. Структуры центров связывания кислорода.
- 18. Роль цинка в каталитической функции карбоксипептидазы А. 19. Карбоангидраза. Характеристика области активного центра. Функция металла.
- 20. Роль молибдена в биологических системах.
- 21.Основные направления применения комплексов металлов с биолигандами

5.4.Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Итоговая оценка знаний студентов по изучаемой дисциплине составляет 100 баллов, которые конвертируется в «зачтено» / «не зачтено» (итоговая форма контроля – зачёт), по следующей схеме:

41 балл и выше	«зачтено»
40 баллов и ниже	«не зачтено»

Текущий контроль освоения компетенций студентом оценивается из суммы набранных баллов в соответствии с уровнем сформированности компетенций: пороговым или продвинутым. При этом учитывается посещаемость студентом лекций, лабораторных/практических занятий, активность студента на лабораторных/практических занятиях, результаты промежуточных письменных и устных контрольных опросов, итоги контрольных работ (тестов), участие студентов в научной работе (например, написание рефератов, докладов и т.п.). Каждый компонент имеет соответствующий удельный вес в баллах.

Пороговый уровень (41-60 баллов):

- контроль посещений 20 баллов,
- опрос и собеседование 10 баллов
- выполнение лабораторных работ— 20 баллов,
- тестирование 10 баллов,

Продвинутый уровень (61-100 баллов):

Самостоятельная работа - 10 баллов,

реферат – 10 баллов,

- доклад и презентация 10 баллов,
- зачет 10 баллов.

При проведении зачёта учитывается посещаемость студентом лекционных занятий, активность на практических занятиях, выполнение самостоятельной работы, отработка пропущенных занятий по уважительной причине.

Шкала оценивания ответа на зачете

Показатель	Балл
обучающийся обнаруживает высокий уровень овладения теорией вопроса,	10
знание терминологии, умение давать определения понятиям,	
Знание персоналий, сопряженных с теоретическим вопросом,	
Умение проиллюстрировать явление практическими примерами, дает	
полные ответы на вопросы с приведением примеров и/или пояснений.	
обучающийся недостаточно полно освещает теоретический вопрос,	8
определения даются без собственных объяснений и дополнений, ответы на	
вопросы полные с приведением примеров	
обучающийся обнаруживает недостаточно глубокое понимание	5
теоретического вопроса, Определения даются с некоторыми неточностями,	
дает ответы только на элементарные вопросы, число примеров ограничено	
обучающийся обнаруживает незнание основных понятий и определений, не	1
умеет делать выводы, показывает крайне слабое знание программного	
материала.	

Максимальное количество баллов - 10

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1.Основная литература:

- 1. Ахметов, Н.С. Общая и неорганическая химия: учебник для вузов. 10-е изд. СПб. : Лань, 2019. 744с. Текст: непосредственный.
- 2. Ершов, Ю.А. Общая химия: биофизическая химия; химия биогенных элементов : учебник для вузов в 2-х кн. / Ю. А. Ершов, В. А. Попков, А. С. Берлянд. 10-е изд. М. : Юрайт, 2019. Текст: непосредственный.
- 3. Свердлова, Н.Д. Общая и неорганическая химия: эксперимент. задачи и упр.: учеб. пособие для вузов. СПб. : Лань, 2019. 352с. Текст: непосредственный.
- 4. Химия : учебник для вузов / под ред. Г. Н. Фадеева. 2-е изд. Москва : Юрайт, 2021. 431 с. Текст : электронный. URL: https://urait.ru/bcode/469031

6.2. Дополнительная литература

- 1. Александрова, Э. А. Химия неметаллов: учебник и практикум для вузов / Э. А. Александрова, И. И. Сидорова. 3-е изд. Москва: Юрайт, 2021. 358 с. Текст: электронный. URL: https://urait.ru/bcode/470276
- 2. Глинка, Н. Л. Общая химия в 2 т. : учебник для вузов. 20-е изд. Москва : Юрайт, 2021. Текст : электронный. URL:
- 3. Менделеев, Д. И. Основы химии в 4 т. Москва : Юрайт, 2021. Текст : электронный. URL: https://urait.ru/bcode/472328
- 4. Никитина, Н. Г. Общая и неорганическая химия в 2 ч. : учебник и практикум для вузов / Н. Г. Никитина, В. И. Гребенькова. 2-е изд. Москва : Юрайт, 2020. Текст : электронный. URL:

- 5. Пузаков, С. А. Общая химия, сборник задач и упражнений: учебное пособие для вузов / С. А. Пузаков, В. А. Попков, А. А. Филиппова. 5-е изд. Москва: Юрайт, 2021. 251 с. Текст: электронный. URL: https://urait.ru/bcode/468600
- 6. Скляр, С. И. Общая, неорганическая и бионеорганическая химия: учебное пособие для вузов / С. И. Скляр, В. Г. Дрюк, В. Ф. Шульгин. 3-е изд. Москва: Юрайт, 2021. 263 с. Текст: электронный. URL: https://urait.ru/bcode/474424
- 7. Суворов, А. В. Общая и неорганическая химия в 2 т.: учебник для вузов / А. В. Суворов, А. Б. Никольский. 6-е изд. Москва: Юрайт, 2021. Текст : электронный. URL: https://urait.ru/bcode/470737

https://urait.ru/bcode/453533

https://urait.ru/bcode/453888

https://urait.ru/bcode/470483

https://urait.ru/bcode/470484

https://urait.ru/bcode/470738

https://urait.ru/bcode/472395

https://urait.ru/bcode/472396

https://urait.ru/bcode/472752

- 8. Бабков, А. В. Химия в медицине : учебник для вузов / А. В. Бабков, О. В. Нестерова. Москва : Юрайт, 2021. — 403 с. — Текст : электронный. — URL: https://urait.ru/bcode/469316
- 9. Тупикин, Е. И. Химия. В 2 ч. Часть 1. Общая и неорганическая химия : учебник для вузов. 2-е изд. Москва : Юрайт, 2021. 385 с. Текст : электронный. URL: https://urait.ru/bcode/471551
- 10. Химия элементов: учебник для вузов / Э. Т. Оганесян, В. А. Попков, Л. И. Щербакова, А. К. Брель. Москва: Юрайт, 2021. 251 с. Текст: электронный. URL: https://urait.ru/bcode/471878

6.3. Ресурсы информационно-телекоммуникационной сети «Интернет»

- http://www.Alhimik.ru
- http://ru.encydia.com./en/
- http://www.lomonosov-fund.ru/enc/ru/encyclopedia
- http://slovari.yandex.ru/
- http://znanium.com

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

- 1. Методические рекомендации по подготовке и проведению практических и лабораторных работ для направления подготовки 06.03.01 Биология, профиль «Биомедицинские технологии», квалификация (степень) выпускника бакалавр [Текст]. М., 2021.
- 2. Методические рекомендации по выполнению самостоятельных работ, предусмотренных в рамках направления подготовки 06.03.01 Биология, профиль «Биомедицинские технологии», квалификация (степень) выпускника бакалавр [Текст]. М., 2021.

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows

Microsoft Office

Kaspersky Endpoint Security

Информационные справочные системы:

Система ГАРАНТ Система «КонсультантПлюс»

Профессиональные базы данных fgosvo.ru pravo.gov.ru www.edu.ru

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебная аудитория (610) для проведения занятий лекционного и семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованная учебной мебелью, доской, демонстрационным оборудованием;
- помещение для самостоятельной работы (ауд.621), укомплектованная учебной мебелью, персональными компьютерами с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду МГОУ;
- помещения для хранения и профилактического обслуживания учебного оборудования, укомплектованные мебелью (шкафы/стеллажи), наборами демонстрационного оборудования и учебно-наглядными пособиями;
- лаборатория (ауд.623), оснащенная оборудованием: персональными компьютерами с подключением к сети Интернет, наборами демонстрационного оборудования и учебнонаглядными пособиями.

Оборудование:

фотометр пламенный, спектрофотометр, ИК-спектрометр, рефрактометр, спектрофлюориметр, поляриметр.

К лабораторным столам подведен природный газ, водопровод, электричество; имеются вытяжные шкафы для работы с токсичными и дурно пахнущими веществами.

Для проведения экспериментальной работы используются приборы:

весы электронные, вольтметр, вытяжной шкаф, источник питания постоянного тока, кондуктометр, магнитная мешалка, муфельная печь, прибор для определения температуры плавления, рН-метр, сушильный шкаф. Посуда общего назначения: пробирки, стаканы, колбы плоско- и круглодонные, воронки химические, капельные, делительные. Фарфоровая посуда: тигли, выпарительные чашки, ступки, пестики. Мерная посуда: цилиндры, мерные колбы, пипетки разного объема, бюретки.