Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Дата подписания: 24.10.2024 14:21:41

Уникальный программный ключ:

6b5279da4e034bff679172803da5b7b559fc69e2

МИНИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ

Государственное образовательное учреждение высшего образования Московской области МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ (МГОУ)

Биолого-химический факультет

Кафедра общей биологии и биоэкологии

Согласовано управлением организации и

контроля качества образовательной

деятельности

«22» июня 2021 г.

Начальник управления

Одобрено учебно-методинеским советом

Протокол «22» июня 2021 г. № 5

Председатель

О.А. Шестакова /

Рабочая программа дисциплины

Г.Е. Суслин /

Моделирование экосистем

Направление подготовки

06.03.01 Биология

Профиль:

Биоэкология

Квалификация

Бакалавр

Форма обучения

Очная

Согласовано учебно-методической комиссией Рекомендовано кафедрой общей биологии и

биолого-химического факультета

Протокол от «17» июня 2021 г. № 7

Председатель УМКом

биоэкологии

Протокол от «10» июня 2021 г. № 11

/И. Ю. Лялина / Зав. кафедрой

/М.И. Гордеев /

Мытищи 2021

Авторы-составители:
Гордеев М.И., доктор биологических наук, профессор, заведующий кафедрой общей биоло-
гии и биоэкологии МГОУ
Власов С.В., кандидат биологических наук, доцент кафедры общей биологии и биоэкологии
МГОУ
Рабочая программа дисциплины «Моделирование экосистем» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 06.03.01 Биология, утвержденного приказом МИНОБРНАУКИ РОССИИ № 920 от 7 августа 2020 г.
Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» и является элективной дисциплиной (модулем).
Дисциплина реализуется с применением дистанционных образовательных технологий.

Содержание

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ С	Эшибка! Закладка не определена.
2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТІ	ЕЛЬНОЙ ПРОГРАММЫ Ошибка! Зак ла
3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ С	Эшибка! Закладка не определена.
4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТ	ГОЯТЕЛЬНОЙ РАБОТЫ
ОБУЧАЮЩИХСЯ	5
5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ Т	ГЕКУЩЕЙ И
ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ	Ошибка! Закладка не определена.
6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧ	łЕНИЕ
дисциплиныС	Эшибка! Закладка не определена.
7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИС	ЦИПЛИНЫ Ошибка! Закладка не опре д
8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕС	СТВЛЕНИЯ
ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	Ошибка! Закладка не определена.
9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИ	ІСЦИПЛИНЫ <mark>Ошибка! Закладка не о</mark> пј

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цель и задачи дисциплины

Цель освоения дисциплины «Моделирование экосистем»: формирования у студентов компетенций в базовых областях экологии и оценки состояния природной среды.

Задачи дисциплины:

- дать представление об общих принципах моделирования в экологии;
- научить применять методы системного анализа при решении теоретических и прикладных задач в экологии.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

ДПК-2 Способен участвовать в процедурах мониторинга окружающей среды в местах проведения исследований и проводить анализ природных образцов

ДПК-4 Способен участвовать в оценке объектов природной среды, их безопасности для здоровья людей и окружающей среды

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Рабочая программа дисциплины «Моделирование экосистем» разработана для подготовки бакалавров по направлению подготовки 06.03.01, Биология, профиль Биоэкология.

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» и является элективной дисциплиной (модулем).

Для освоения дисциплины студенты используют знания, умения и виды деятельности, сформированные в процессе изучения других дисциплин базовой части: Математического и естественнонаучного цикла. Полученные в процессе обучения знания могут быть использованы в научно-исследовательской работе, при написании квалификационной работы.

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Показатель объема дисциплины	Форма обучения
	Очная
Объём дисциплины в зачетных единицах	2
Объем дисциплины в часах	72
Контактная работа	36,2
Лекции	12 ¹
Практические занятия	24
Контактные часы на промежуточную аттестацию:	0,2
Зачет	0,2
Самостоятельная работа	28

Форма промежуточной аттестации: зачет в 8 семестре.

¹ Реализуется с применением дистанционных образовательных технологий

3.2.Содержание дисциплины

		Кол-во ча	сов
Наименование разделов (тем) Дисциплины с кратким содержанием	Лекции	Практические занятия	Самостоя- тельная работа
Раздел 1. Основы теории систем. Системный подход в экологии.			
Тема 1. Общие понятия теории систем. Определение «системы», ее структура и функции. Принципы системности.	2	2	2
Тема 2. Биосфера как система. Экосистема как объект математического моделирования.	2	2	2
Раздел 2. Системный анализ в экологии и основные принци- пы моделирования.			
Тема 1. Информационное описание экосистем.	2		1
Тема 2. Концептуальные и математические модели в экологии и этапы их построения. Классификация моделей.	2	2	2
Тема 3. Аналитические, имитационные и эмпирико-статистические модели.	2		1
Тема 4. Моделирование воздействия среды на биоценотические компоненты экосистем.		2	4
Тема 5. Демографические модели.		4	4
Тема 6. Моделирование процессов в сообществах и экосистемах.		4	4
Тема 7. Моделирование глобальных процессов в биосфере.	2	2	4
Тема 8. Применение некоторых количественных методов в экологических исследованиях.		6	4
Итого:	12	24	28

Формой промежуточной аттестации является: зачет в 8 семестре.

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РА-БОТЫ ОБУЧАЮЩИХСЯ

Тема для самостоя-	Изучаемые вопросы	Кол-во	Формы само-	Методиче-	Форма
тельного изучения		часов	стоя-тельной	ское обеспе-	отчёт-
			работы	чение	ности
Общие понятия	Системы и закономерности их	2	Анализ ли-	Основная	Тесто-
теории систем.	формирования и развития.		тературных	и реко-	вые
Принципы си-	Классификация систем.		источни-	мендуе-	зада-
стемности.	Структура систем. Информа-		ков, кон-	мая учеб-	ния
	ционный подход к анализу си-		спектиро-	ная и	
	стем.		вание	научная	
				литерату-	
				pa	
Биосфера как си-	Биосфера как система. Харак-	2	Анализ ли-	Основная	Доклад

стема. Экосистема как объект математического моделирования.	теристики экосистем. Структура экосистемы. Энергетические, вещественные и информационные потоки в экосистемах. Роль моделирования при анализе экологических систем и в управлении природопользованием.		тературных источни- ков, кон- спектиро- вание	и реко- мендуе- мая учеб- ная и научная литерату- ра	с пре- зента- цией на прак- тиче- ском заня- тии Рефе- рат.
Системный анализ в экологии и основные принципы моделирования.	Экосистема как объект математического моделирования. Информационное описание экосистем. Концептуальные и математические модели и этапы их построения. Классификация моделей. Аналитические, имитационные и эмпирико-статистические модели.	4	Анализ литературных источников, конспектирование	Основная и рекомендуемая учебная и научная литература	Тесто- вые зада- ния
Моделирование воздействия среды на биоценотические компоненты экосистем.	Взаимосвязь экосистемы со средой и пределы толерантности воздействий. Влияние факторов. Модели зависимости скорости биологических процессов от температуры. Влияние среды на рождаемость. Лимитирующие факторы. Оценка их влияния.	4	Анализ литературных источников, конспектирование	Основная и рекомендуемая учебная и научная литература	Контрольные задания. Доклад с презентацией на практическом занятии Реферат.
Демографические модели.	Модели динамики численности популяций. Модели возрастной структуры популяций. Модели выживания.	4	Анализ литературных источников, конспектирование	Основная и реко- мендуе- мая учеб- ная и научная литерату- ра	Кон- троль- ные зада- ния. Доклад с пре- зента- цией на прак- тиче- ском заня- тии

Моделирование процессов в со-	Модели конкуренции за ре- сурсы, отношений «хищник –	4	Δ		рат.
обществах и экосистемах.	жертва». Модели пространственного распределения организмов. Модель экологической ниши. Модели устойчивости сообществ.		Анализ ли- тературных источни- ков, кон- спектиро- вание	Основная и рекомендуемая учебная и научная литература	Кон- троль- ные зада- ния. Доклад с пре- зента- цией на прак- тиче- ском заня- тии Рефе- рат.
Моделирование глобальных процессов в биосфере.	Модели биогеохимических циклов. Модели продуктивности. Модели потока энергии. Модели эволюции биосферы.	4	Анализ литературных источников, конспектирование	Основная и рекомендуемая учебная и научная литература	Доклад с презента- цией на прак- тиче- ском заня- тии Рефе- рат.
Применение некоторых количественных методов в экологических исследованиях.	Модели водных экосистем. Модели лесных сообществ. Оценка загрязнения атмосферы и поверхности земли. Эколого-экономические модели. Модели глобального развития.	28	Анализ литературных источников, конспектирование	Основная и реко- мендуе- мая учеб- ная и научная литерату- ра	Доклад с пре- зента- цией на прак- тиче- ском заня- тии Рефе- рат.

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРО-МЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код и наименование	Этапы формирования		
компетенции			
ДПК-2 Способен участвовать в процедурах	1. Аудиторная работа на учебных заня-		
мониторинга окружающей среды в местах	тиях (лекции, практические занятия);		
проведения исследований и проводить анализ	2. Самостоятельная работа.		
природных образцов			
ДПК-4 Способен участвовать в оценке объек-	1. Аудиторная работа на учебных заня-		
тов природной среды, их безопасности для	тиях (лекции, практические занятия);		
здоровья людей и окружающей среды	2. Самостоятельная работа.		

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оцени- ваемые компе- тенции	Уровень сформирован-	Этап формиро- вания	Описание показателей	Критерии оценивания	Шкала оцени- вания
ДПК-2	Пороговый	Работа на учебных занятиях (лекции, практические занятия) Тема: 1,2,3,4,5.	знать: - принципы системности; - критерии выделения, виды, структуру и функции систем; - основные положения системной организации мира, круговоротах вещества, потоках энергии и информации в экосистемах; - направления изучения экосистем; - принципы системного анализа; уметь: - демонстрировать знание основ природоохранных биотехнологий;	Текущий контроль усвоения знаний на основе оценки устного ответа на вопросы, доклада Выполнение практических работ. Тестовый контроль. Доклад с презентацией.	Шкала оценивания опроса и собеседования Шкала оценивания тестирования Шкала оценивания доклада Шкала оценивания презентации
	Продви- нутый	Самостоятельная работа	уметь: - использовать методы экологического мониторинга; - проводить лабораторные исследования, замеры, анализы отобранных природных образцов. владеть:	Текущий контроль усвоения знаний на основе оценки устного ответа на вопросы, доклада Выполнение практи-	Шкала оценивания опроса. Шкала оценивания тестирования

			 основными методами математического моделирования в экологии. навыками работы с прикладными пакетами программ 	ческих работ. Тестовый контроль. Доклад с презентацией. Реферат. Зачет	Шкала оценивания доклада Шкала оценивания презентации Шкала оценивания реферата.
ДПК-4	Пороговый	Работа на учебных занятиях (лекции, практические занятия) Тема: 6,7,8,9,10,11,12,1 3,14,15,16.	знать: - принципы системного анализа; - свойства основных математических моделей, применяемых в популяционной экологии, биогеоценологии и других биологических дисциплинах. уметь: - демонстрировать знания экологического законодательства Российской Федерации; нормативных и методических материалов по охране окружающей среды и рациональному использованию природных ресурсов.	Текущий контроль усвоения знаний на основе оценки устного ответа на вопросы, доклада Выполнение практических работ. Тестовый контроль. Доклад с презентацией.	Шкала оценивания опроса и собеседования Шкала оценивания тестирования Шкала оценивания доклада Шкала оценивания презентации
	Продви- нутый	Самостоятельная работа	уметь: - использовать основные контрольные показатели нормирования загрязняющих веществ (ПДК) при оценке объектов окружающей среды и их безопасности для здоровья людей; - использовать методологию системного анализа и моделирования для прогноза путей устойчивого и безопасного развития отдельных	Текущий контроль усвоения знаний на основе оценки устного ответа на вопросы, доклада Выполнение практических работ. Тестовый контроль. Доклад с презентацией. Реферат.	Шкала оценивания опроса. Шкала оценивания тестирования Шкала оценивания доклада Шкала оцениония соцения соцениония соцени

	регионов и человечества	Зачет.	вания
	в целом;		презен-
	владеть:		тации
	- навыком моделирова-		Шкала
	ния развития биологиче-		оцени-
	ских процессов в приро-		вания
	де.		рефера-
			та.

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерные темы семинаров и практических занятий:

Тема 1: Общие понятия теории систем. Принципы системности.

Перечень вопросов, выносимых на занятие: Системы и закономерности их формирования и развития. Системообразующий фактор. Разновидности систем. Функция системы. Структура систем. Сложность системы. (Структурный и поведенческий уровни). Информация и ее свойства. Информационный подход к анализу систем. Динамика системы. Открытые и закрытые системы. Механизмы развития системы. Принципы системности.

Тема 2: Экосистема как объект моделирования.

Перечень вопросов, выносимых на занятие:

Специфика системного подхода в экологии. Основные уровни организации жизни. Биосфера как система. Характеристики экосистем. Понятиями «сообщество», «экосистема», «биогеоценоз». Структура экосистемы. Энергетические, вещественные и информационные потоки в экосистемах. Реализация системных принципов (эмерджентности, иерархической организации, несовместимости, контролирующего поведения, реккурентного объяснения, осуществимости, множественности моделей, минимаксного моделирования и др.) в экологии. Дедуктивные и индуктивные методы объяснения и прогнозирования в экологии. Суть полимодельного подхода.

Тема 3: Классификация моделей. Модели в экологии.

Перечень вопросов, выносимых на занятие: Принципы системного анализа. Подходы и методы системного анализа. Основные этапы системного анализа. Модель, ее признаки. Концептуальные и математические модели и этапы их построения. Экосистема как объект моделирования. Информационное описание экосистем. Классификация моделей. Аналитические, имитационные и эмпирико-статистические модели. Роль моделирования при анализе экологических систем и в управлении природопользованием.

Тема 4: Моделирование воздействия среды на биоценотические компоненты экосистем.

Перечень вопросов, выносимых на занятие: Взаимосвязь экосистемы со средой и пределы толерантности воздействий. Влияние факторов. Модели зависимости скорости биологических процессов от температуры и освещенности. Лимитирующие факторы. Оценка их влияния.

Тема 5: Демографические модели. Модели динамики численности.

Перечень вопросов, выносимых на занятие: Модели динамики численности популяции. Ряды Фибоначчи, экспоненциальная модель, логистическая модель. Емкость и сопротивляемость среды. Модели выживания.

Тема 6: Демографические модели. Модели возрастной структуры популяций

Перечень вопросов, выносимых на занятие: Модели возрастной структуры популяций. Возрастные группы. Коэффициенты выживания и плодовитости. Модель возрастной структуры Льюиса и Лесли. Определение допустимого изъятия особей.

Тема 7: Модели конкуренции популяций.

Перечень вопросов, выносимых на занятие: Допущения в моделях Лотки-Вольтерра. Модели конкуренции за ресурсы, отношений «хищник – жертва».

Тема 8: Моделирование процессов в сообществах и экосистемах.

Перечень вопросов, выносимых на занятие: Модели экологической ниши. Модель многомерной (фундаментальной) экологической ниши Хатчинсона. Модели пространственного распределения организмов. Модель «Число видов/площадь». Модели распределения значимости видов.

Модели сукцессионных изменений. Модель сукцессии на основе марковских цепей.

Тема 9: Моделирование глобальных процессов в биосфере.

Перечень вопросов, выносимых на занятие: Модели глобальных биогеохимических циклов (углерода, кислорода, азота). Модели продуктивности. Модели потока энергии. Модель эволюции биосферы. Эмпирические обобщения, лежащие в основе модели. Модель устойчивости биосферы.

Тема 10: Применение некоторых количественных методов в экологических исследованиях.

Перечень вопросов, выносимых на занятие: Модели водных экосистем.

Модели лесных сообществ. Оценка загрязнения атмосферы и поверхности земли.

Эколого-экономические модели. Модели глобального развития.

Тема 11: Использование пакетов статистических программ в моделировании экологических процессов.

Перечень вопросов, выносимых на занятие: Основные статистические пакеты свободного программного обеспечения и их возможности. Статистическая программа PAST. Знакомство со статистической средой R и некоторыми, используемыми в ней прикладными пакетами для экологических исследований. Возможности программного обеспечения.

Анализ структуры населения. Анализ пространственного размещения организмов.

Тема 12: Многомерные статистические модели в экологии.

Перечень вопросов, выносимых на занятие: Многомерный анализ и его применение в экологических исследованиях. Анализ главных компонент. Дискриминантный анализ. Факторный анализ. Кластерный анализ. Моделирование в программе PAST.

Вопросы для самоконтроля:

- 1. Дайте определение системы.
- 2. Какие системы называются открытыми, изолированными, закрытыми?
- 3. Какие системы называют гомогенными, гетерогенными?
- 4. Назовите основные системные принципы.
- 5. Дайте определение эмерджентности системы.

- 6. Что называется целевой функцией или стратегией системы?
- 7. Что называется динамикой системы?
- 8. В чем заключается процесс самоорганизации системы?
- 9. Как охарактеризовать понятия «Системный подход», «Системные исследования», «Системный анализ»?
- 10. Что является технической основой системного анализа?
- 11. Охарактеризуйте этапы системного анализа.
- 12. Поясните понятия «модель», «моделирование».
- 13. Каким требованиям должна соответствовать модель?
- 14. Назовите этапы процесса моделирования.
- 15. Назовите этапы, выделяемые в построении математических моделей.
- 16. Дайте определение понятиям «биологические системы» и «экологические системы».
- 17. Назовите особенности биологической системы.
- 18. Как подразделяются биологические и экологические системы по степени сложности структуры?
- 19. Что понимается под экосистемой?
- 20. Перечислите основные характеристики экосистемы.
- 21. Приведите иерархию биологической организации экосистем.
- 22. На чем основывается информационная классификация моделей экосистем?
- 23. Дайте характеристику основных подходов к моделированию и прогнозированию в экологии.
- 24. Как осуществляется моделирование в экологической деятельности.
- 25. Какие модели по способу построения используются при экологическом моделировании?
- 26. Назовите основные методы экологических исследований. Охарактеризуйте каждый из них.
- 27. На чем основана классификация статических и динамических моделей?
- 28. Дайте краткую характеристику детерминированных и недетерминированных моделей.
- 29. Составьте схему системного анализа для решения практических экологических задач и опишите основные этапы.
- 30. Составьте блок-схему для анализа водного баланса.
- 31. Чем характерны блоковые схемы?
- 32. Каковы цели, принципы и задачи эколого-экономического мониторинга?
- 33. Какие модели используются в эколого-экономическом мониторинге?
- 34. Охарактеризуйте структуру модели продуктивного процесса.
- 35. Как может отразиться прогнозное изменение климатических параметров на климатических изменениях растительного покрова?

Примеры тестовых заданий:

- 1. Фиксация связей между элементами системы, инвариантная во времени, понимается как:
- 1. Поведение;
- 2. Структура;
- 3. Сложность;
- 4. Самоорганизация.
- 2. Изменение системы во времени определяется как:
- 1. Поведение;
- 2. Структурирование;
- 3. Усложнение;
- 4. Эволюция.

- 3. Характеристики, которые присущи целой системе, но отсутствуют у составляющих ее элементов, называются:
- 1. Сложными;
- 2. Новыми;
- 3. Структурными;
- 4. Функциональными.
- 4. Принцип контринтуитивного поведения систем Форрестера заключается в следующем:
- 1. Система историко-эволюционно развивается в сторону усложнения;
- 2. Поведение любой системы непредсказуемо;
- 3. Сложная система развивается не так, как мы предполагаем;
- 4. Чем глубже анализируется сложная система, тем менее определенны наши суждения о ее повелении.
- 5. Принцип несовместимости Заде гласит:
- 1. Чем глубже анализируется сложная система, тем менее определенны наши суждения о ее поведении;
- 2. Для объяснения и предсказания структуры и (или) поведения сложной системы возможно построение нескольких моделей, имеющих равное право на существование;
- 3. Поведение любой системы непредсказуемо;
- 4. Сложная система развивается не так, как мы предполагаем.
- 6. Связи, предназначенные для передачи вещества, энергии, информации и их комбинаций от одного элемента к другому, называются:
- 1. Прямыми;
- 2. Обратными;
- 3. Нейтральными;
- 4. Косвенными.
- 7. Группы элементов системы, способные преобразовывать воздействия и воздействовать веществом и энергией на другие подсистемы, называются:
- 1. Рецепторными;
- 2. Эффекторными;
- 3. Рефлексивными;
- 4. Детерминированными.
- 8. Группы элементов системы, способные воспроизводить внутри себя процессы на информационном уровне, называются:
- 1. Акцепторными;
- 2. Детерминированными.
- 3. Рефлексивными;
- 4. Эффекторными;
- 9. Не сводимость свойств целого к сумме свойств его частей представляет собой:
- 1. Принцип интегративных уровней;
- 2. Принцип эмерджентности:
- 3. Принцип «Бритвы Оккама»;
- 4. Принцип несовместимости.
- 10. Методы научного объяснения, связанные с выдвижением статистических гипотез и получением статистических описаний для объясняемого явления, называются:
- 1. Индуктивными;

- 2. Рекуррентными;
- 3. Интуитивными;
- 4. Дедуктивными.
- 11. Б.С.Флейшман (1978, 1982) предложил пять принципов усложняющегося поведения систем.

Поставьте напротив предлагаемых принципов номер, соответствующий их уровням на представленной схеме:

- Гомеостаз (обратные связи);
- Рефлексия;
- Вещественно-энергетический баланс;
- Принятие решений;
- Преадаптация.

12. Установите последовательность этапов системного анализа, поставив соответствую-
щие порядку цифры от 1 до 7:
□ выбор проблемы;
□ внедрение результатов;
□ установление иерархии целей и задач;
□ выбор путей решения залачи:

- □ моделирование;□ оценка возможных стратегий.
- 13. Описание системы с помощью многих переменных является:

□ постановка задачи и ограничение ее сложности

- 1) векторным
- 2) скалярным
- 3) факториальным
- 14. Свойство биологической системы, с помощью которого она может поддерживать свои параметры при изменениях внешней среды
- 1) самоорганизация;
- 2) адаптивность;
- 3) стабилизация;
- 4) самовоспроизводство;
- 5) целесообразность поведения.
- 15. Свойство биологической системы удерживать свои существенные для выживания параметры в заданных эволюционных пределах
- 1) адаптивность;
- 2) самоорганизация;
- 3) самовоспроизводство;

- 4) гомеостаз;
- 5) гомеокинез.
- 16. Свойство биологической системы, с помощью которого она может перестраивать свою структуру
- 1) самоорганизация;
- 2) адаптивность;
- 3) стабилизация;
- 4) самовоспроизводство;
- 5) целесообразность поведения.
- 17. Свойство биологической системы, при котором параметры системы колеблются около некоторого среднего положения, оставаясь в пределах границ, это
- 1) адаптивность;
- 2) самоорганизация;
- 3) самовоспроизводство;
- 4) гомеостаз;
- 5) гомеокинез.
- 18. Такого рода смена состояния системы характеризуется коренной структурной перестройкой системы, отдельные компоненты исчезают, а на их месте могут возникнуть новые
- 1) кризис;
- 2) катастрофа;
- 3) катаклизмы;
- 4) xaoc;
- 5) адаптация.
- 19. Модели, представляющие собой устные и письменные описания с использованием иллюстраций
- 1) словесные;
- 2) математические;
- 3) структурные;
- 4) геометрические;
- 5) логические.
- 20. Укажите переменные, которые не будут использоваться при характеристике среды:
- 1) минимальное значение
- 2) максимальное значение
- 3) среднее значение
- 4) стандартное отклонение
- 5) критерий Стьюдента.
- 21. Этот метод исследования экологических систем позволяет установить результат влияния на организм или популяцию комплекса факторов, выяснить общую картину развития и жизнедеятельности вида в конкретных условиях
- 1) математический;
- 2) биологический;
- 3) лабораторный;
- 4) экспериментальный;
- 5) полевой.

- 22. Этот метод исследования экологических систем позволяет проанализировать влияние на организм отдельных факторов в искусственно созданных условиях
- 1) математический;
- 2) биологический; 20
- 3) лабораторный;
- 4) экспериментальный;
- 5) полевой.
- 23. Отношение числа особей данного вида к общему числу особей видов, выраженное в процентах – это
- 1) обилие;
- 2) встречаемость:
- 3) доминирование;
- 4) покрытие;
- 5) биомасса.
- 24. Количество особей вида либо всего сообщества, приходящееся на единицу площади или объема – это
- 1) обилие;
- 2) встречаемость;
- 3) доминирование;
- 4) покрытие;
- 5) биомасса.

Примеры контрольных заданий

- 1. Составьте диаграммы взаимодействий элементов в системах с экспоненциальным и логистическим ростом.
- 2. Покажите, что график логистического уравнения имеет единственную точку перегиба. Найдите ее и дайте биологическую интерпретацию.

$$\frac{k_1}{a} = \frac{k_2}{a} \qquad \frac{x_{\infty}}{a} u \frac{y_{\infty}}{a}$$

- $\frac{k_1}{\varepsilon_1} = \frac{k_2}{\varepsilon_2} \qquad \qquad \frac{x_\infty}{x_0} u \frac{y_\infty}{y_0}$ 3. Рассмотреть систему Вольтерра в случае
- 4. Пусть экосистема содержит п конкурирующих видов. Определим матрицу потребления $A = (a_{ii})$ как матрицу размера $n \times n$, в которой элемент a_{ij} показывает среднее число особей j-го вида, потребляемое в день средней особью i-го вида. Какие типы поведения описываются нижеприведенными матрицами потребления:

a)
$$A = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{bmatrix}$$
; $6 A = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$?

- 5. Допустим, что в задаче 4 потребление особи i-го вида приносит хищнику энергетический доход в r_i калорией. Определим r как n-мерный вектор-столбец, у которого i-й компонент равен r_i . Дайте биологическую интерпретацию компонентам вектора Ar.
- 6. Исходная популяция имеет следующую возрастную структуру $a_0 = (0,6,12)$ и матрица Лесли A — следующий вид:

16

$$A = \begin{bmatrix} 0 & 18 & 18 \\ 1/6 & 0 & 0 \\ 0 & 2/3 & 0 \end{bmatrix}$$

Найти (приближенно) численность популяции через достаточно большое число n лет и ее устойчивую возрастную структуру.

- 7. Для задачи 6 определить долю особей, которую можно изымать в год из популяции, чтобы ее размер оставался равен исходному.
- 8. Допустим, вероятность λ рождения особью детеныша в два раза больше вероятности μ гибели самой особи. Определить среднее значение N(t) популяции в момент времени t=100, вычислить также вариацию var (N(t)), коэффициент вариации $\frac{\sqrt{\mathrm{var}\;(N(t))}}{N(t)}$, найти ограничения на λ и начальное значение популяции N_0 , при котором коэффициент вариации при t=100 будет меньше 0,1%.
- 9. Пусть переходные вероятности для сукцессионных изменений на верховом болоте (с шагом в 20 лет) соответствуют представленным в таблице:

Начальное со-	Вероятность перехода в конечное состояние			
стояние	Болото	Луг	Лес	Участки, вы-
				едаемые траво-
				ядными
Болото	0,65	0,29	0,06	0
Луг	0,3	0,33	0,3	0,07
Лес	0	0,28	0,69	0,03
Участки, вы-	0	0,4	0,2	0,4
едаемые траво-				
ядными				

Определить долю каждого сообщества в состоянии равновесия.

10. Найти оптимальную стратегию рыбака, использующего в качестве наживки мух и живца, если матрица стратегий имеет вид:

Стратегии Рыболов использует в качестве наживи		в качестве наживки		
		Мух (x_1) Живца (x_2)		
Рыба питается	x_1	-6	0	
	x_2	0	-4	

11. Найти оптимальную стратегию рыбака, если он дополнительно использует искусственных мух и блесну, а матрица стратегий в этом случае имеет вид:

Стратегии		Рыболов использует в качестве наживки			
		$Myx(x_1)$	Живца (x_2)	Блесну (x_3)	
Рыба питается	x_1	-6	0	0	
	x_2	0	-4	-2	

12. По данным, приведенным в таблице, вычислить коэффициенты в уравнении регрессии y/x. Связь между переменными предполагается линейной (y=a+bx). Построить график теоретической и эмпирической линий регрессии. Проверить с помощью критерия χ^2 совпадение теоретической и эмпирической линии регрессии. Стандартное значение критерия

при числе степеней свободы, равном 7, и уровнях значимости 1 и 5% равны 18,475 и 14,067 соответственно.

X	1,2	2,5	3,5	4,5	5,5	6,5	7,5	8,5
У								
15	4	5						
25	1	3	1					
35	2	3	6	5	3	1		
45		5	9	19	8	7	2	1
55		1	2	7	16	9	4	2
65			1	5	6	4	2	2
75							1	3

- 13. Рассчитать значения частного ($_z r_{xy}$) и множественного (r_{xxyz}) коэффициентов корреляции между признаками x длина соцветия, y длина листа и z
- высота растения, а также ошибки рассчитанных коэффициентов. Сделать выводы о достоверности полученных коэффициентов, объяснить смысл полученных коэффициентов. Значения парных коэффициентов корреляции следующие: \mathbf{r}_{xy} =0,34; \mathbf{r}_{yz} =0,61; \mathbf{r}_{xz} =0,83. Объем выборки равен 100. Стандартное значение коэффициента Стьюдента при числе степеней свободы 97 и уровне значимости 1% равно 1,98.

Примерные темы докладов и презентаций

- 1. Система, структура и поведение. Сложность системы.
- 2. Принципы системности.
- 3. Реализация системных принципов в экологии.
- 4. Системный анализ и его этапы.
- 5. Модели, их признаки и классификация.
- 6. Роль моделирования при анализе экологических систем и в управлении природопользованием.
- 7. Модели зависимости скорости биологических процессов от температуры и освещенности.
- 8. Модели динамики численности популяции.
- 9. Модели выживания.
- 10. Модели возрастной структуры популяций.
- 11. Модели конкуренции за ресурсы.
- 12. Модель «хищник жертва».
- 13. Модели экологической ниши.
- 14. Моделирование сукцессионных изменений.
- 15. Моделирование биогеохимического цикла углерода.
- 16. Моделирование биогеохимического цикла кислорода.
- 17. Моделирование биогеохимического цикла азота.
- 18. Модели лесных сообществ.
- 19. Оценка загрязнения атмосферы и поверхности земли.
- 20. Эколого-экономические модели.
- 21. Модели глобального развития.

Примерная тематика рефератов

1. Принципы общей теории систем. Сущность и основные характеристики сложных систем.

- 2. Взаимодействие внешних функций и внутренней саморегуляции системы. Равновесие систем.
- 3. Механизмы саморазвития систем.
- 4. Системные законы и их роль в аналитической деятельности.
- 5. Моделирование и его роль в познании.
- 6. Процесс формализации при построении математических моделей.
- 7. Семейства математических моделей, их преимущества и недостатки.
- 8. Детерминированные модели в экологии.
- 9. Имитационные экологические модели.
- 10. Использование стохастических моделей для решения экологических задач.
- 11. Оптимизация решения при допустимости незначительного загрязнения окружающей среды.
- 12. Системный анализ при исследовании структуры и функционирования экологических систем.
- 13. Модели, описывающие пищевые цепи, межвидовые и внутривидовые отношения в экосистеме.
- 14. Пирамида биомасс, продукции и энергии в экосистеме.
- 15. Продукция элементов экосистемы и ее в целом, продуктивность сообществ.
- 16. Загрязнение экосистемы и влияние его на структуру и функционирование экосистем.
- 17. Математическое моделирование продукционных процессов в экосистеме.
- 18. Модель глобального биогеохимического цикла углерода.
- 19. Модель круговорота кислорода.
- 20. Модель глобального цикла азота.
- 21. Колебания «хищник-жертва», теория и примеры.
- 22. Видовое разнообразие, количественная оценка.
- 23. Математические модели популяций. Основные уравнения, учитывающие конкуренцию, логистическое уравнение.
- 24. Особенности моделирования океанической биоты.
- 25. Особенности моделирования наземных экосистем.
- 26. Демографические модели.
- 27. Моделирование антропогенных воздействий на биосферу.
- 28. Глобальные климатические модели.
- 29. Сравнение различных моделей динамики органического вещества почв при стандартных сценариях глобального изменения климата.

Примерный перечень вопросов к зачёту

- 1. Основы понятия теории систем.
- 2. Классификация систем.
- 3. Простые и сложные системы.
- 4. Отражение причинно-следственных связей в модели системы.
- 5. Методы качественного оценивания систем.
- 6. Принципы системного анализа.
- 7. Структура системного анализа.
- 8. Классификация моделей.
- 9. Моделирование, этапы построения модели, области применения моделей
- 10. Динамические модели экологических процессов.
- 11. Становление и развитие системных идей в экологии.
- 12. Иерархичность экологических систем.
- 13. Место живых систем среди других систем и их классификация.
- 14. Свойство «эмерждентности» систем, примеры.
- 15. Саморегуляция экологических систем.

- 16. Конечная и экспоненциальная скорости роста.
- 17. Видовое и структурное разнообразие в экосистемах.
- 18. Устойчивость и стабильность экологических систем.
- 19. Температура как экологический фактор. Модели скорости биологических процессов в зависимости от температуры.
- 20. Рост численности в геометрической прогрессии. Теорема Лотки и ее значение. Возрастной состав популяции.
- 21. Экспоненциальная и логистическая модели роста численности.
- 22. Модель конкуренции Вольтерры-Лотки.
- 23. Модель взаимодействия хищник-жертва Вольтерры-Лотки. Колебания численности в системе хищник-жертва.
- 24. Видовое разнообразие как интегральная характеристика сообщества. Методы оценки разнообразия. Индексы разнообразия и типы распределения обилия видов в сообществе.
- 25. Экологическая ниша. Пространство ниши и границы толерантности. Кривая и поверхность толерантности.
- 26. Биологическая продуктивность.
- 27. Поток вещества и энергии через экосистему. Пирамиды численности, биомассы и энергии.
- 28. Эмерджентные свойства, основные компоненты и главные биогеохимические циклы биосферы.
- 29. Концепция биосферы. Модели эволюции биосферы.
- 30. Имитационное моделирование и принципы экологического прогноза.

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Программа освоения дисциплины предусматривает опрос и собеседование, подготовку доклада и презентации, реферата, выполнение практических заданий, тестирование.

Критерии балльно-рейтинговой оценки знаний

Итоговая оценка знаний студентов по изучаемой дисциплине составляет 100 баллов, которые конвертируется в «зачтено» / «не зачтено» (итоговая форма контроля — зачёт), по следующей схеме:

41 баллов и выше	«зачтено»
40 баллов и ниже	«не зачтено»

Текущий контроль освоения компетенций студентом оценивается из суммы набранных баллов в соответствии с уровнем сформированности компетенций: пороговым или продвинутым. При этом учитывается посещаемость студентом лекций, лабораторных/практических занятий, активность студента на лабораторных/практических занятиях, результаты промежуточных письменных и устных контрольных опросов, итоги контрольных работ (тестов), участие студентов в научной работе (например, написание рефератов, докладов и т.п.).

Каждый компонент имеет соответствующий удельный вес в баллах:

- контроль посещений 10 баллов,
- опрос и собеседование 10 баллов
- лабораторные занятия 20 баллов.
- контрольные задания 10 баллов
- тестирование 10 баллов,
- реферат 10 баллов,
- доклад 10 баллов,
- презентация 10 баллов,

- зачет – 10 баллов.

При проведении зачёта учитывается посещаемость студентом лекционных занятий, активность на лабораторных занятиях, выполнение самостоятельной работы, отработка пропущенных занятий по уважительной причине.

Шкала оценивания опроса

Показатель	Балл
Ответ полный и содержательный, соответствует теме; студент	5
умеет аргументировано отстаивать свою точку зрения, демон-	
стрирует знание терминологии дисциплины.	
Ответ в целом соответствует теме (не отражены некоторые ас-	3
пекты); студент умеет отстаивать свою точку (хотя аргументация	
не всегда на должном уровне); демонстрирует удовлетворитель-	
ное знание терминологии дисциплины.	
Ответ неполный как по объему, так и по содержанию; положе-	0
ния ответа не аргументированы; проблемы с употреблением	
терминологии дисциплины.	

Максимальное количество баллов -10 (по 5 баллов за каждый опрос).

Шкала оценивания лабораторного занятия

Критерии оценивания	_
	Баллы
Обучающийся правильно определяет рассматриваемые понятия, приводя соответствующие примеры; демонстрирует глубокие знания теоретического материала. Работу выполняет полностью самостоятельно; владеет основными методами определения влияния того или иного экологического фактора на живые организмы, навыками использования методов и логических приёмов, обосновывает суждения и решения; делает аргументированные выводы, использует большое количество различных источников информации. Демонстрирует свободное владение используемым оборудованием, реактивами и материалами. Показывает освоение всех компетенций дисциплины.	17-20
Обучающийся правильно определяет рассматриваемые понятия, демонстрирует знание теоретического материала. Работу выполняет самостоятельно; оперирует базовыми экологическими понятиями и терминами, владеет общими представлениями о воздействии того или иного экологического фактора; использует различные методы познания, приводит альтернативные взгляды на рассматриваемую проблему, делает аргументированные выводы. Демонстрирует хорошее владение используемым оборудованием, реактивами и материалами. Показывает освоение компетенций.	13-16
Обучающийся определяет рассматриваемые понятия; демонстрирует знание теоретического материала; оперирует некоторыми экологическими понятиями. Работу выполняет с помощью преподавателя, изложение материала ясное и четкое, логически выстроенное. Демонстрирует удовлетворительное владение используемым оборудованием, реактивами и материалами, частично владеет компетенциями дисциплины.	9-12

Обучающийся представил работу, в которой допустил существенные ошибки; не использует различные методы познания, не приводит альтернативные взгляды на рассматриваемую проблему, не делает аргументированных выводов. Работу выполняет с помощью преподавателя. Демонстрирует частичное владение используемым оборудованием, реактивами и материалами, частичное владение компетенциями дисциплины.	5-8
Обучающийся представил часть работы, в которой допустил существенные ошибки; не использует различные методы познания, не приводит альтернативные взгляды на рассматриваемую проблему. Не способен самостоятельно выполнить работу, практически не владеет используемым оборудованием, реактивами и материалами, демонстрирует частичное владение компетенциями дисциплины.	1-4
Работа не выполнена / не сдана.	0

Максимальное количество баллов – 20

Шкала оценивания доклада

Показатель	Балл
Доклад соответствует заявленной теме, выполнен с привлечением	10
достаточного количества научных и практических источников по те-	
ме, магистрант в состоянии ответить на вопросы по теме доклада.	
Доклад в целом соответствует заявленной теме, выполнен с привле-	5
чением нескольких научных и практических источников по теме, ма-	
гистрант в состоянии ответить на часть вопросов по теме доклада.	
Доклад не совсем соответствует заявленной теме, выполнен с ис-	1
пользованием только 1 или 2 источников, магистрант допускает	
ошибки при изложении материала, не в состоянии ответить на во-	
просы по теме доклада.	

Шкала оценивания презентации

Показатель	Балл
Представляемая информация систематизирована, последовательна	10
и логически связана. Проблема раскрыта полностью. Сделаны обос-	
нованные выводы. Широко использованы возможности технологии	
программы, в которой выполнена презентация.	
Представляемая информация в целом систематизирована, последова-	5
тельна и логически связана (возможны небольшие отклонения). Про-	
блема раскрыта. Возможны незначительные ошибки при оформле-	
нии.	
Представляемая информация не систематизирована и/или не совсем	1
последовательна. Проблема раскрыта не полностью. Выводы не сде-	
ланы или не обоснованы. Возможности технологии программы ис-	
пользованы лишь частично.	

Максимальное количество баллов за доклад с презентацией – 20 баллов.

Шкала оценивания реферата

Уровень	Критерии оценивания	Г
оценива-		Баллы
ния	Conormania acomparatriviat noctoriavia in valu y so toria	
	Содержание соответствуют поставленным цели и задачам, изложение материала отличается логичностью и смысловой	
	завершенностью, студент показал владение материалом, уме-	
	ние четко, аргументировано и корректно отвечать на постав-	9-10
	ленные вопросы, отстаивать собственную точку зрения	
	Содержание недостаточно полно соответствует поставлен-	
	ным цели и задачам исследования, работа выполнена на недо-	
	статочно широкой источниковой базе и не учитывает новей-	
	шие достижения науки, изложение материала носит преиму-	
	щественно описательный характер, студент показал достаточ-	6-8
	но уверенное владение материалом, однако недостаточное	0 0
	умение четко, аргументировано и корректно отвечать на по-	
	ставленные вопросы и отстаивать собственную точку зрения	
Реферат	Содержание не отражает особенности проблематики из-	
Гефериг	бранной темы; содержание работы не полностью соответствует	
	поставленным задачам, источниковая база является фрагмен-	
	тарной и не позволяет качественно решить все поставленные в	
	работе задачи, работа не учитывает новейшие достижения ис-	3-5
	ториографии темы, студент показал неуверенное владение ма-	
	териалом, неумение отстаивать собственную позицию и отве-	
	чать на вопросы	
	Работа не имеет логичной структуры, содержание работы в	
	основном не соответствует теме, источниковая база исследо-	
	вания является недостаточной для решения поставленных за-	0-2
	дач, студент показал неуверенное владение материалом, не-	
	умение формулировать собственную позицию.	

Максимальное количество баллов – 10.

Шкала оценивания тестирования и контрольного задания

Критерии оценивания	
80-100% правильных ответов - «отлично»	
60-80% правильных ответов - «хорошо»	6-8
30-50% правильных ответов - «удовлетворительно»	3-5
0-20 % правильных ответов - «неудовлетворительно»	2

Максимальное количество баллов – 10.

Шкала оценивания ответа на зачете

Показатель	Балл
Обучающийся обнаруживает высокий уровень овладения теорией вопроса,	10
знание терминологии, умение давать определения понятиям,	
Знание персоналий, сопряженных с теоретическим вопросом,	
Умение проиллюстрировать явление практическими примерами, дает пол-	
ные ответы на вопросы с приведением примеров и/или пояснений.	
Обучающийся недостаточно полно освещает теоретический вопрос, опреде-	8

ления даются без собственных объяснений и дополнений, ответы на вопросы	
полные с приведением примеров	
Обучающийся обнаруживает недостаточно глубокое понимание теоретиче-	5
ского вопроса, Определения даются с некоторыми неточностями, дает отве-	
ты только на элементарные вопросы, число примеров ограничено	
Обучающийся обнаруживает незнание основных понятий и определений, не	1
умеет делать выводы, показывает крайне слабое знание программного мате-	
риала.	

Максимальное количество баллов – 10

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Основная литература:

- 1. Блинов, Л. Н. Экология: учебное пособие для вузов / Л. Н. Блинов, В. В. Полякова, А. В. Семенча; под общей редакцией Л. Н. Блинова. Москва: Издательство Юрайт, 2020. 208 с. (Высшее образование). ISBN 978-5-534-00221-8. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/450677
- 2. Ризниченко, Г. Ю. Математическое моделирование биологических процессов. Модели в биофизике и экологии: учебное пособие для вузов / Г. Ю. Ризниченко. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2020. 181 с. (Высшее образование). ISBN 978-5-534-07037-8. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/451558
- 3. Степановских, А. С. Общая экология: учебник для вузов / А. С. Степановских. 2-е изд. Москва: ЮНИТИ-ДАНА, 2017. 687 с. ISBN 5-238-00854-6. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/71031.html

6.2 Дополнительная литература:

- 1. Гаврилова, Л. В. Математическое моделирование водных экосистем: Учебное пособие / Гаврилова Л.В., Компаниец Л.А., Распопов В.Е. Краснояр.:СФУ, 2016. 202 с.: ISBN 978-5-7638-3524-3. Текст : электронный. URL: https://znanium.com/catalog/product/966729
- 2. Мананков, А. В. Урбоэкология и техносфера: учебник и практикум для вузов / А. В. Мананков. Москва: Издательство Юрайт, 2021. 494 с. (Высшее образование). ISBN 978-5-534-06909-9. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/472938
- 3. Мешалкин, В.П. Основы информатизации и математического моделирования экологических систем [Электронный ресурс] : учеб. пособие / В.П. Мешалкин, О.Б. Бутусов, А.Г. Гнаук. М. : ИНФРА-М, 2017. 357 с. Режим доступа: http://znanium.com/bookread2.php?book=560753
- 4. Прикладная экология: учеб. пособие / Грушко М.П.[и др.]. 2-е изд. СПб. : Лань, 2018. 268с. Текст: непосредственный
- 5. Ризниченко, Г. Ю. Математические методы в биологии и экологии. Биофизическая динамика продукционных процессов в 2 ч. Часть 1: учебник для вузов / Г. Ю. Ризниченко, А. Б. Рубин. 3-е изд., перераб. и доп. Москва: Издательство Юрайт, 2021. 210 с. (Высшее образование). ISBN 978-5-534-07872-5. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/470479
- 6. Шилов, И. А. Экология популяций и сообществ: учебник для вузов / И. А. Шилов. Москва: Издательство Юрайт, 2021. 227 с. (Высшее образование). ISBN 978-5-534-13188-8. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/469799

7. Шилов, И. А. Экология: учебник для вузов / И. А. Шилов. — 7-е изд. — Москва: Издательство Юрайт, 2021. — 539 с. — (Высшее образование). — ISBN 978-5-534-09080-2. — Текст: электронный // ЭБС Юрайт [сайт]. — URL: https://urait.ru/bcode/468567

6.3 Ресурсы информационно-телекоммуникационной сети «Интернет» Рекомендуемое свободное программное обеспечение:

- 1. Статистическая среда R www.r-project.org
- 2. http://ecology.msu.montana.edu/labdsv/R/ лабораторные работы по статистике в R для студентов экологического факультета университета в Монтане.
- 3. Статистическая программа Past http://folk.uio.no/ohammer/past/ (Hammer, Ø., Harper, D.A.T., and P. D. Ryan, 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9pp.)

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

- 1. Методические рекомендации по подготовке и проведению практических и лабораторных работ для направления подготовки 06.03.01 Биология, профиль «Биоэкология», квалификация (степень) выпускника бакалавр [Текст]. М., 2021.
- 2. Методические рекомендации по выполнению самостоятельных работ, предусмотренных в рамках направления подготовки 06.03.01 Биология, профиль «Биоэкология», квалификация (степень) выпускника бакалавр [Текст]. М., 2021.

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows Microsoft Office Kaspersky Endpoint Security

Информационные справочные системы:

Система ГАРАНТ Система «КонсультантПлюс»

Профессиональные базы данных

fgosvo.ru pravo.gov.ru www.edu.ru

Свободно распространяемое программное обеспечение, в том числе отечественного производства

ОМС Плеер (для воспроизведения Электронных Учебных Модулей) 7-zip

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения занятий лекционного и семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные учебной мебелью, доской, демонстрационным оборудованием;

- помещения для самостоятельной работы, укомплектованные учебной мебелью, персональными компьютерами с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду МГОУ;
- помещения для хранения и профилактического обслуживания учебного оборудования, укомплектованные мебелью (шкафы/стеллажи), наборами демонстрационного оборудования и учебно-наглядными пособиями;
- лаборатория, оснащенная оборудованием: персональными компьютерами с подключением к сети Интернет, наборами демонстрационного оборудования и учебно-наглядными пособиями.